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Rational-driver approximation in car-following theory
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The problem of a car following a lead car driven with constant velocity is considered. To derive the
governing equations for the following car dynamics a cost functional is constructed. This functional ranks the
outcomes of different driving strategies, which applies to fairly general properties of the driver behavior.
Assuming rational-driver behavior, the existence of the Nash equilibrium is proved. Rational driving is defined
by supposing that a driver corrects continuously the car motion to follow the optimal path minimizing the cost
functional. The corresponding car-following dynamics is described quite generally by a boundary value prob-
lem based on the obtained extremal equations. Linearization of these equations around the stationary state
results in a generalization of the widely used optimal velocity model. Under certain conditi@sdense
traffic” limit ) the rational car dynamics comprises two stages, fast and slow. During the fast stage a driver
eliminates the velocity difference between the cars, the subsequent slow stage optimizes the headway. In the
dense traffic limit an effective Hamiltonian description is constructed. This allows a more detailed nonlinear
analysis. Finally, the differences between rational and bounded rational driver behavior are discussed. The
latter, in particular, justifies some basic assumptions used recently by the authors to construct a car-following
model lying beyond the frameworks of rationality.
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I. CAR-FOLLOWING THEORIES AND BASIC dv,,
PROPERTIES OF DRIVER BEHAVIOR T =04Vt 2 Gaar(XarValXer or).  (LD)
a' Fa

Recently, the theoretical and empirical foundations of the _ _
physics of traffic flow(for a review, see Refd1,2]) have The termg,(v,) describes the motion of car on the empty
come into the focus of the physical community. The motionfoad, whereas the tergh,q (X, ,v o|Xar ,v4) allows for the
of individual cars has many peculiarities, since it is con-interaction of car with care’ (o' # ). The interaction is
trolled by motivated driver behavior, together with somedue to the necessity for driver to keep a certain safe head-
physical boundaries. Nevertheless, on macroscopic scales tH@y distance between the cars. All the models mentioned
vehicle ensembles display phenomena such as phase forn0ve use varioudnsazefor the last term.
tion and phase transitions widely met in physical systems The most interesting special case, which covers the ma-
(see, e.g., Ref§1-3]). So, the cooperative behavior of cars jority of all traffic flow situations, is that of single-lane traf-
treated as active particles seems to be of a more generfi¢. Here, all cars can be ordered according to their position
nature than the mechanical laws and constructing a consign the road in the car motion direction,<x,.;, herea
tent theory of traffic flow “from scratch” is up to now a =1,... N. Most models take into account solely nearest
challenging problem. neighboring carsx and a+1, i.e.,g,,#0 for a'=a+1

To describe individual car dynamics a great variety ofand, may bea’=a—1 only. However, more complicated
microscopic models have been proposed. These models diftodels exist that can be described as models with anticipa-
fer in the details of the interaction between cars and the timé&on [9-13 or the so-called intelligent driver modgl4,15|.
update rule, ranging from differential equations to cellular The earliest “follow-the-leader” modelsl6,17] relate the
automata[1,2]. There has been a big deal of work on theaccelerationa, of car @ to the velocity difference «,
macroscopic behavior emerging from the microscopic dy-—v,+1) only, i.e.,
namics when exploring the behavior of systems of interact-

ing cars. However, there is still a lot of controversy in both dv,, 1

the macroscopic behavior when compared to refdify and T — (Vg Vas1)s (1.2
in the microscopic foundations of the individual car dynam- v

ics itself[5].

One currently adopted approach to specify the microwhere 7, is the characteristic time scale of the velocity re-
scopic governing equations of the individual car motion islaxation. In subsequent generalizations of this maglebe-
the so-called social force model. More details can be foundame a function of the car motion state, in particular, of the
in Refs.[6—8]; here only the basic ideas are touched on. Atcurrent velocityv , and the headwat ,=x,,,—X,— € (for
each moment of time, a drivera changes the spead, of  a review, see Ref$5,18|). Here,{ is the car length. In Refs.
her car depending on the road conditions and the arrang¢19,2( another approach called the optimal velocity model
ment of the neighboring cars: is proposed, which describes the individual car motion by
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do,, 1 estimation of the surrounding situation should contribute to
i = 7 vam doplha) ], (1.3 the value ofr,. If the latter contribution is essential the
v delay timer, is to depend substantially on the state of car

whered,,(h) is the steady-state velocitthe optimal veloc- motion. Moreover, from our point of view the memory ef-

ity) chosen by drivers as function of the headwelyetween  fects stem from the fact that the description of individual car
the cars. It should be noted that this approach is related tBotion is a boundary value problem rather than an initial
much earlier safety distance modgi—23. value problem. Indeed, at the current moment of time the

Concerning the fundamentals of approximations such afeadway distance and the car velocity are quantities given
a,=a(v,,0 41Xy, Xq41), it is Noted that there are actually for the driver beforehand. Correcting the car motion she
two stimuli affecting the driver behavior. One of them is the Should choose such a driving strategy that in a certain time
necessity to move at the mean speed of traffic flow, in thdnterval the car velocity and headway distance attain their
given case at the speed., ; of cara+ 1. So, first, drivere ~ OPtimal stationary values, at least, approximately.
should control the velocity difference (—v,.1). The other These memory effects are the topic of this paper. We pro-
is the necessity to maintain a safe headway distaggé ) pose that drivers plan their behavior for a certain time in
depending on the current velocity,. The following-the- ~2dvance{33] instead of simply reacting to the surrounding
leader models mainly take into account the former stimulusSituation. Similar ideas related to the optimum design of a
The optimal velocity model, conversely, allows for the latter distance controlling _drlver assistance system are discussed in
stimulus only. More sophisticated approximations, e.g., RefsRef. [34]. Mathematically, the driver’s planning of the fur-

[14,15,24—28 to name but a few, allow for both stimuli. ther motion is just to find extremals of a certain priority
Not,e a’Iso a simplénsatzcalled the’combined model in Ref. functional that ranks outcomes of different driving strategies.

[29] which is also related to the intelligent driver model '€ derivation of microscopic governing equations for

[14,15; systems with motivated behavior based on a certain “optimal
self-organization” principle has been discussed recently
dv,, (1— ) K [2,35—-39. The assumption adopted in these works is that
T =—T—[va—va+1]—7—[va— FoptNa) ] individuals try to minimize the interaction strength or,
v v (1.43 equivalently, to optimize their own success and to minimize

the efforts required for this. The approach discussed here

This equation takes into account both stimuli via a phenomapPplies to the concepts of mathematical economics, namely,
enological coefficient & k<1. This is also the case for the t0 the notion of preferences and utilitgee, e.g., Re{40]).

Helly model[24] which can be written a&f. Ref.[5]) In Ref. [33] a specific form of the priority functional has
been proposed. From that, a certAinsatzsuch as the com-
du,, 1 1 bined model(1.49 or the Helly model(1.4b could bede-
WZ—T—U[Ua—vaH]JF m[(xoﬂrl_xa)_hopt(va)]! rived. Nevertheless, the question how to find the priority

(1.4b functional “from scratch” remains open.
' In the present paper the priority functional is constructed

whereLy is a certain spatial scale ahg,(v) is the optimal by applying to general properties of the driver behavior for a

headway distance chosen by drivers when moving at speediMmplified situation. A car followingno overtaking allowed

v. Reference[24] used a linearAnsatzfor hyy(v). Later @& lead car which is driven with constant speéds consid-

[26], this model was generalized to allow for the dependenc&red. The task is to derive governing equations for the fol-

of the kinetic coefficients on the motion state. lowing car motion specified by the time dependence of the
However, the question whether a collection of variablesvelocity v(t) and the headway distant¥t).

such as{v, ,v.+1,Xe Xqer1} SPecifies the acceleratioa,

completely is not trivial. Drivers are characterized by the Il. THE COST FUNCTION OF DRIVING

motivated behavior rather than physical regularities. For ex-

ample, memory effects may be essential and can destroy the

direct relationshipa,=a(v,,va4+1:Xe:Xe+1). Up t0 NOW, Assuming a driver to be able of comparing any two states

memory effects in car-following modeling have been treatedh,,v,}, {h,,v,}, the phase plangh>0p >0} can be or-

only in a simplified version. This has been done by relatingdered by a preference relatisn. Therefore, the existence of

the current acceleration,(t) to the velocitiesv ,(t— 7,), a cost functionF(h,v) may be assumed such that

v,+1(t—75) and the headway distante,(t— 7,) taken at a

previous momentt( r,) of time (for a review of such an {hy,vat<{hy,v}e Flhyv)=Fhyvy). (2.1

approach concerning with the following-the-leader models,

see Refs[5,18], regarding the optimal velocity model see Typically, — F(h,v) is called the utility function andfor it)

Refs.[30-32). Herer, is the formal delay time in the driver the relation< matches the inequality=. Here, the use of

response which is treated as a constant. Such an approacondition (2.1) is preferred, because then the cost function

however, is rather formal, because, first, it is not clear whyF(h,v) is similar to the free energy of physical systems, with

the memory effects relate only two moments of time insteadhe minima as the stationary states.

of a certain interval as a whole. Second, a simple physiologi- Obviously, the cost functiodF(h,v) cannot be specified

cal delay in the driver response as well as the mental drivecompletely because a composite functid F(h,v)] also

A. General properties of driver preference
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meets condition(2.1) for any increasing functiori[-]. When not moving at all{=0) and the density of cars

Therefore, at the current stage of the theory development arsurrounding the given car does not come close to the limit

approximation or Ansatz adopted for the cost function values, i.e.,pl<1, it does not matter how many cars are

F(h,v) has no meaning. located in the vicinity. So the assumption thatvat 0 and
Applying to a simple speculatidd1] it can be shown that for h>1 the cost function is independent pfcan be used:

if a path goes through a certain small neighborhood of the

point{h,v} one or many times then only the cumulative time F(p,00=1 for pl<1l. (2.5

interval 8t during which the system was located in the given

neighborhood contributes to the cost functional. The correln all other casesF{(p,v) depends on certain combinations

sponding weight coefficien(h,v) obviously plays the role 0f p andv rather than orp individually, at least wherpl

of a certain cost function for the given traffic state. So, the<1.

resulting cost functional for the whole path is Considering the behavior of(p,v) for a fixed speed it
can be stated that driving with small valueshafarge values

destination of p) requires a lot of effort. ThusF(p,v) increases withp.

L{h(t),v(t)}= o Fh(t),v(t))dt. (2.2 The opposite case of small values pf(large values oh)

deserves special attention. Without the possibility of overtak-

If the driver has incomplete information about the traffic ing no especially attractive headway distance can be marked.
flow pattern ahead she plans the further motion onl withinTherefore’ we assume that the cost functifp,v) pos-
patte : P . Y sesses the only one minimum attained at the boundary point
some limits, spatial and temporal ones. This can be taken_" . S,
. ; . . . p=0 provided the velocity is fixed.
into account by introducing a certain cofactor in front of the R N .
: ; . X Keeping in mind the aforesaid it is reasonable to write
function F(h,v) which depends on spatial coordinates or
time.
. . . v
The cost functionZ(h,v) entering the cost functional Fp,v)=FOp)+f ﬁ—J(pI)m (2.6)
(2.2 is already determined within a constant multiplier and a m
for pl<1. Here the exponenh is a constant and the func-
tion f(z)—0 asz—0. Since the cost function attains its

certain additive term not affecting driver’s prefereriéd].

This feature enables us to seek for a reasonAbisatzfor
minimum at the boundary point we may set=1. More-
over, the latter term on the right-hand side of expression

the given cost function.
B. Characteristic features of the car motion cost (2.6) can be interpreted as a certain “interaction” potential

In the following, the priority function of the car motion between the following and lead cars which is long-distant
state with respect to the velocity and the reciprocal value one form=1. A detailed analysis of effects caused by the
p=1/h of the headway distance will be characterized. Notevalue of the exponent requires an individual study. Here
that the valugp is not the real car density on a highway. The the valuem=1 is actually chosen as just a simple reasonable
present analysis ignores the car length, so we have preferr@$sumption. Since the effect of the surrounding cars is de-
to use the valug defined as above. The most preferablePressed for small values of the car velocitythe function
state is the motion on an empty roaﬂ:(()) at maximum f(Z) is also to attain its minimum a=0. Therefore,f(Z)
speedd, .. This maximum speed is determined by external=2> asz<1 should hold. In other words, inside a certain
factors. So, at{p=0y= 9 the cost functionF(p,v)  Nheighborhood of the origifp =0 =0} the expansion
:=F(h,v)|n-1, has its global minimum:

2
F(0,0ma0 =0, (2.3 F(p,v)=f(0,v)+;7pl (2.7)

max

set equal to zero keeping in mind the aforesaid about th((a:an be adopted.

freedom in specifying the cost function. Since there is no - o . .

other minimum for the motion on an empty road, Taking into aqcount these speculauong qbout the beh'aV|or
of the cost functionF(p,v) caused by variations of both its

arguments, the following simpl&nsatzwill be used subse-

F(0,0=1, (2.9 quently:
can be fixed. 9 2
Because of the car construction a driver can visually con- Flpw)= ( 1— %) + U_p|_ (2.9
trol the headway distance within some valie 1-2 m. U 2

When the headway distanbettains such values a driver has

to stop her car because of possible collision even at suffiFigure 1 displays this function. It has only one global mini-
ciently slow velocities. Sd, coincides with the characteristic mum atp=0 andv = 9,,. For a fixed velocity it attains
headway distance in dense jams where the car density attaiaslocal minimum at the boundagy=0. Ansatz(2.8) gener-

the possible maximum. In the following, all headway dis- alizes the adopted assumptions about the cost function. The
tances are related to the scéland the dimensionless vari- former term takes into account relatio(&3) and (2.4), the
ablepl is used. latter one is based on approximati¢2.7). Of course, the
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FIG. 2. lllustration of the recognition distanaeand its relation-
ship with the limit angle of perceptiof .

cost function, F

where the time scale=1 s characterizes the acceleration
capability of the car. In writing this expression we have as-
sumed that driving without acceleration is preferable. Then,
the cost functionFy(h,v,a) had been expanded into a Taylor
FIG. 1. Characteristic form of the cost function, Eg.8). series with respect te, keeping the leading term only. Ac-
cording to the result to be obtained the time scakntering
expression{3.1) and the one used in E¢L.43 are practically
<1. Since this is the main region of interest, this does nofhe same. It sr_lould be noted that. confining ourselves to ex-
pansion(3.1) with respect taa the difference between accel-

constrain its usefulness. ; . .
To deal with the car dynamics we should construct theeration and deceleration processes has been lost. In reality,

cost functional £{h(t)} for the car motion pathgh(t)} they are different. Ignorir_lg this _difference Ieads to models_
treated now as continuous functions of timaVe note that where cars can crash. It is possible to take into account this

the time dependence of headway distah¢8 gives us the effect using the approach under development, which, how-

complete information about the car dynamics due to the reEVer, is worthy of individual investigation and will be done

lationshipdh/dt=V ~v. Leaping ahead, we say that facing Sorgg;,v:?er;leclifi(\e/.er various thresholds in the driver recogni-
this problem it is necessary to introduce additional notions ' g

First, we should expand the phase space in describing the cé?n of hazards and obstacles exiég]. One of them is the

otonsat becase rasien processes are now the su ST 2L HET 8 Ser a1 e b o
of consideration. Second, drivers plan their behavior for g ) ' y

S . . . - of the visual angled, subtended, for example, by vehicles
certain time in advance instead of simply reacting to the head(Fig. 2. The value of, can be estimated a8,

surrounding situation. So we should specify the region insid& . c.
which a driver can monitor the traffic flow evolution and, ~15-30 min of ard43]. The critical angled;, the charac-

thus, plan driving her car. A priority functional similar to Eq. teristic heighte of cars, and the corresponding mean dis-
(2.2 must span the time interval corresponding to this relanceh are related by
gion. Beyond it the contribution of the path fragments to

evaluating the car motion quality at the given moment of O~ —.
time has to be fairly minor. A

parabolicAnsatz(2.8) is approximate only in the limipl

This allows for the estimation of the recognition distance as

\~200-400 m settingg~2 m and6f.~30-15 min of arc.

As previously[33], we relate the driver anticipation with the
A. Cost functional and the extremal equation region of size\ in front that is clearly observable and where

Dealing with transient processes in the car motion w she can recognize the car behavior. A driver plans her motion

should consider once more the collection of phase variable ased on the information received by monitoring traffic flow

characterizing the cost of car motion at the current momen'lns'.de the observable region. Under norm.al cond|t!ons this
of time. Keeping in mind conventional driver experience, we'€gion should enable hef to govern the motion effectl_vely, for_
will expand the current state of car motion given by headwa;ﬁxampleh’ to fdece_leratg n advance av0|d|rr:g a p055||ple acct-
h and velocityv with the car acceleratioa. This is essential >ent. There ore its siza as to meet the inequalitk
because a driver cannot change the position and velocity cif’ﬂmaXT' Leaping ahead, we introduce the value

her car immediately; they vary continuously in time and con-

tain no sharp jumps. Conversely, a driver controls the accel- o=
eration directly governing the car motion. Besides, she can A
change the acceleration practically without delay because i
the present analysis it is quite reasonable to ignore tim
scales related to physiological properties of the driver or t(£
the mechanical properties of the car. So, the cost functio
FY(h,v,a) for the motion statdh,v,a} can be written:

IIl. RATIONAL DYNAMICS OF CAR MOTION

D max™

<1 (3.2

reated as a small parameter in the theory to be developed. In
articular, forr=1 s, 9,,~100 km/h, and\~300 m we
aveo~0.1.

The size\ of the recognition distance can be estimated
using another argumentation.4f~ 10 s is the typical decel-

252 eration time from the velocity},,,, attained on the given
Fih,v,a)=Fh,v)+ — (3.1 empty road to zero value then the estimate ¥,y Should
max hold. For ¥ ,,,~100 km/h we have again~300 m.
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Now the cost functional of car motion can be written in andard variational technique and taking into account conditions
integral form as expressio2.2) containing integrand3.1). (3.5 and (3.6) the governing equation for these extremals
The car is assumed to be located at poirgtlong the road can be derived:
and to move with speed at the current momeritof time.

The possible paths of further motidn(t,t),t=t} form the @ _ovd Vi
set &(t,x,v) on which the cost functional is defined. Here @‘90‘}— _ZX d_taa}— + Faa}—
and below Gothic letters will be used to label the path vari-

ables. The functiofr(t,t)} allows for a derivation of all the

dynamical variables, the headway distan¢e), the car ve- - d_tﬁu}—d”L Xau}—d_ah}—dzo- 3.7
locity u(t), and the acceleratiar(t) of the trial car path. The

cost functional evaluating the quality of the pdtift,t)} can To study the spectral properties of E§.7) it is linearized
be written as around the stationary solutiohy,V). Its eigenfunctions can

be found by theAnsatz

L{t}= Jtmexr{ - t(t:\_x

Fipu,a)dt,  (3.3a ¢
f)g(f)o‘exl{ - 5;) .

The obtained eigenvalue equation is given by

Fih,u,a)dt.  (3.3b ({+ ) 22— A({+ ) {+50=0, (3.9

with the coefficients

or

o V
Lih}= JI EXF{ -5t

Forms(3.39 and (3.3b correspond to the driver prediction

) . A ) \Y 1., ,
with spatial or temporal limitations, respectively. The cost b= o, A=90,0°F>0, (3.9
functional of form (3.38 was used in Ref[33]. Subse- Fmax 2
quently, functional3.3b) is used because its form simplifies v
the mathematical manipulations when the veloaitpf the —9.2q2 X( 2 v )
lead car is fixed. In particular, dealing with functior{al3b Q=27"Vmay 7 A InduF (310

we can specify directly the set of trial patl§gt,h,v) using o . i
solely the time dependence fif(t,t)} of the headway dis- and the derivatives are taken at the stationary pdigt V).

mined by the dependendg(t,t)}: particular, it is the case for the cost functith8). Equation
(3.8) possesses four roots, one pgdt, ,{_} of them have
ah(t,t) 72h(4,1) positive real parts, the othdr’, ,{"} have negative ones.

u(t,t)=Vv-— P a(t,t)=— o (3.4 Since the eigenfunctions with the eigenvalyé$ ,¢"} di-

verge ast—o we must omit them by virtue of condition
(3.6). Roughly speaking, these divergent eigenfunctions de-
scribe the process of a driver leaving traffic flow, for ex-
ample, to stop the car. Such processes are not under consid-

Furthermore, the cost function&B.3b matches the driver
prediction with temporal limitation, the mechanism which
a]so .allows for the interpretation of the recognition r,egioneration. The former pair of eigenvalues are given by
size in terms oh\ ~ 9,474 . HOwever, both the cost function-
als lead practically to the same results for the analyzed situ- 1

ation. {e=—5+

N )
Each one of trial paths originates at tirnand starts from
(h,v) on the phase plane determined by the headway disso, in a small neighborhood of the stationary poiny (V)
tance and velocity of the car at the current tim&ince we  of Eq. (3.7) any extremal,,(t,t) can be written as
investigate the car motion inside traffic flow but not pro-
cesses of leaving it we assume that time variatio(ty of t—t t—t
the headway distance are bounded. Therefore the trial paths bopd t,1) =hy+ h+ex;{ L T) + h_exp( 4 T) '

fulfill (3.12

b6t —=h(t), u(tt)|—=v(t) (3.5 whereh, andh_ are some constants.
Equation(3.7) is of fourth order, so its general solution is

and do exhibit bounded variations only as time goes to inspecified by four conditions. Solutions that diverge as time

12

(3.11)

finity. In other words, there is a consta@t-0 with goes to infinity have to be omitte@they are related to
{£4,¢}). Their divergence is due to the exponential cofac-
[h(t,t)|<C for t>t. (3.6)  torin integral(3.3b so it is retained beyond a small neigh-

borhood of the stationary poinh(,V). Therefore, only two
In what follows, the driver behavior will be described by conditions are needed to specify the desired solution of Eq.
the extremals of the cost functioné8.3b). Using the stan- (3.7). In particular, the initial headway distanbeand the car
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A non-perfect A
driver prediction

family of optimal

paths {hopt(t, )}

of car motion we adopt the second assumption that the driver
ash equribriam performs this choice continuously:

family of optimal a=~R(h,v,V). (3.19
paths {hopt (£, 1)}

y

All the car-following models based on this equation, but with
different particular forms of the cost functia(h,u,a),

may be categorized as the rational car dynamics approxima-
tion.

Equation(3.15 holds even if the cost functiof(h,u, t|t)
depends explicitly on the timieat which the driver plans her
further motion. Then, the driver evaluation of traffic flow
state will change in time. Therefore, the resulting pttt) }

FIG. 3. lllustration of rational-driver strategy. The left panel Of the real car motion envelops the family of the optimal
corresponds to the case where the driver’s estimate of the car m@aths{hop(t,t)} generated at different momentsof time
tion quality is not perfect. This is described by the cost function(Fig. 3, left panel.

F(b,u,t|t) containing the current timé¢ as its argument. So the The present paper assumes driving to be perfect. The driv-
found optimal pathd),,(t,t) depend on the timewhen the driver  er’s choice is based on the precise knowledge of the cost
plans the further motion. The right panel presents the ideal casRinction }‘d(h,v,a,t) depending solely on the current head-
where the driver is able to evaluate the motion cost precisely andvay distanceh, car velocityv, acceleratiora, and, may be,

the corresponding cost functigf(h,u,t) does not contain the time  the current time. It does not depend on the moment of time
t. So, the optimal path family degenerates into one curve. It shoulgyhen the driver evaluates the possible paths of her further
be noted that the latter is correct even if the timenters the cost motion. This assumption leads to what is called the Nash
function via variations of the lead car velocity. equilibrium in game theorj44]. If, at timet, the driver has

, o found the optimal pathy,(t,to) of the car motionwhich
velocity v determine it completely. The latter statement can qets Eq(3.7) and does not contain explicity], then any

also be proved for the more general fot133 of the cost  ocompytation a certain timet, later gives the same re-
functional[33]. SUIt, Bop ,1) = hop( . Lo) for t=t. In other words, if at time,
the driver has chosen an optimal path(t,t,) then the fur-
B. Rational-driver behavior and Nash equilibrium ther motion will be described by it independently of whether
In the preceding section the dynamical cost functionaithe _driver fo_llows it Wi_thout <_:orrecti0n or optimizes the car
was stated. At the next step the driver strategy based on thigotion continuously(Fig. 3, right panel

headway distance

real path, h(t) real path, h(t)

\ 4
\ 4

time time

evaluation of the motion quality should be descrilEidy. 3). The Nash equilibrium in the driver strategy enables us to
Following Ref.[33], it is supposed that the driver, first, in conclude that Eq(3.7) describes the real car dynamics, not
planning the further motion chooses the pg(t,t) mini- only the imaginary paths existing in the driver’s mind during
mizing the motion cost functionaB.3b), her planning of the further motion. In particular, it can be

rewritten in a form containing the real acceleratmneloc-
driveri— hopt,t)= min  L{ph(t,t)}. (3.13 ity v, and headway distande

h(t,t) e S(t,h,v)
_ _ _ - d’a Vvda V? 920/ d Y%

To do this the driver “solves” Eq(3.7) subject to conditions | — _ZK gt t a5 (aav}‘— xav}‘Jr opF|=0.

(3.5 and (3.6 and, thus, get the optimal path of further A 27

driving, hop(t,t). As noted in the preceding section the op- (3.16

timal path choice is completely determined by the current ca

\{eloc[ty v and the headway _distanteThe terminal con_di— . actually given byAnsatz(3.12, which immediately leads us
tion, i.e., the goal of reaching the steady-state motion, 30 the following expressions for the amplitudes:
implied. Since the driver controls the car motion through

fn the vicinity of the stationary pointhy,,V) its solution is

choosing the adequate val#eof acceleration she has to (v —V)—{_(h—hy)
“find” the second derivative ofy,,(t,t) with respect to the = ri—¢ , (3.17a
former argument [see expressiofB8.4)] and, then, to “cal- e
culate” the result at the current time. Therefore, £.(h—hy)— (v —V)
h_= (3.17b
 Phop( 1) imée
a(t)=— lim ——— (3.19 ) )
t—t+0 Ot and relates the car acceleratato the car velocity and the
headway distanch,
relates the current car acceleratiamo the current headway
distanceh and the car velocity . _ (Gt ) (0—V)— {-¢{+ (h—hy)
Formula(3.14) describes the driver’s choice at the current T v (L+¢2) T '
momentt of time. To convert it into the governing equation (3.18
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These results are analyzed individually.

1. Optimal driving condition

The stationary pointi{=h,,,v=V,a=0) of Eq. (3.16
gives the headwak,, which the driver chooses in order to
follow the lead car at speéd. In particular, the expression

v
&h]:—xr?U}":O (3.19

specifies the relationship between the values of the headway

h and the car velocity for the stationary traffic flow imi-
tated by the given car-following problem. Solving £§.19
for the car velocityv the optimal velocity approximation is
obtained,v =¥4,(h). In particular, for the specific form
(2.8) of the cost functionF(h,v) we immediately get fot
<h<)\

h2
ﬁopt(h): ﬂmaxhz_i_ DZ', (3.20
where the spatial scal@ is given by expression
A
D= > |<D<\. (3.21

Relation(3.20 or similar sigmoid functions are widely used
in the current literature. In particular, fd=1 m and\
=300 m expressiof3.21) gives the estimat®~12 m typi-
cally ascribed to the spatial scdle

2. Linear governing equation for the car-following problem

By introducing the time scale,=7/({, +¢{_) and the
coefficient

{4
Oh=""""73 (3.22
({e+¢)?
the car dynamics equatig.18 can be rewritten as
1 (h—=hy)
a=-— (v—=V)—0h . . (3.23

v v

Equation(3.23 plays a significant role in models that de-
scribe non-rational-driver behavid#5], where expression

(3.23 specifies an optimal acceleration that could be chosen

by rational drivers and the parametgrwas introduced phe-
nomenologically. Hereg;, can be computed using the cost
function (2.98). It is plotted as well as the ratie, /7 as a
function of the variable) (Fig. 4). This representation is due
to the fact that the coefficient ~1 [for the cost function
(2.8) A=1 for I<h<\], the coefficient¢p<1 by virtue of
the adopted assumptidB.2), whereas the coefficiefl var-

ies around unity. Below, the latter will be justified and the

dependence of the coefficiefit on the car motion state will
be analyzed. As seen in Fig. 4 the time scatgesand 7
practically coincide with each other and the paramgies a
small value.
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car motion state characteristics, (2

FIG. 4. The kinetic coefficiengy, and the ratior, /7 vs Q. In
drawing these curves, expressithll with A=1 and¢$=0 was
used. The solid curve igy(Q2), the dashed curve is, /().

3. Following-the-leader model versus optimal velocity model

As discussed already there are two stimuli for a driver to
change the current motion state. One is the velocity differ-
encev —V between the leading car and her car. The second
is the difference between the current speeghd the optimal
speedidqp(h) as function of headway. Models such as Eq.
(1.4) take into account both of them, leaving the determina-
tion of the weight coefficients to appropriate empirical or
experimental data. The results obtained so far actually allow
to predict these coefficients.

This can be demonstrated with the combined model
(1.49. Linearizing Eq.(1.49 around the stationary point
(hy,V) and comparing the result with E¢3.18 we get

-1
hhv} .

This expression gives as function of the car motion state.
Figure 5 plots this dependence for the cost funct@®). As
seen in Fig. 5 the weight coefficiertis small for all inter-
esting values of the headway distance in the car-following

_ o
@+ e

Td 190pt
dh

(3.29

K

10 T T T N Sv——
----- o

0.8 i =t
e 3
*g L
3] 0.6 i T T 3
% : 8.
Q : ‘ G
o 1 Q=051 =
= 04 c H=
k= 12 Q=10 =
30.2%,’, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, (3 Q=151 %

= L o-o

0.0 | | |

0.0 1.0 2.0 3.0 4.0 5.0 6.0

headway distance (in D)

FIG. 5. The weight coefficient of the combined modell.43
vs the stationary headwdy, . For comparison, the dashed curve
shows the optimal velocity, Eq43.20).

056109-7



LUBASHEVSKY, WAGNER, AND MAHNKE PHYSICAL REVIEW E 68, 056109 (2003

1.0

monoscale
: : dynamics, . . .
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FIG. 7. Possible types of the car motion state classified using

. FI.G' 6. The_ ratio of “m? scalas= |§‘|/|§.+| of the cprrespond- different properties of the car dynamics and their mutual arrange-
ing eigenfunctions describing the car motion relaxation as a func-

tion of Q or the headway,, when(} is fixed. Computations in this ment depending ohy, .

figure used cost functio@.§) and ¢=0. scaler/{_ on which the corresponding eigenfunction varies

is much bigger than the time scaté/, of the other eigen-
function. So, the velocity relaxation falls on the first eigen-
function. Thus, the velocity differenae—V disappears prac-
tically completely during the time/{. , which forms the
“fast” stage of the car relaxation. At the next “slow” stage
) o ) of durationr/{ . the headway deviation from the equilibrium
As the headway distands, varies in the interval<hy  yajue h, disappears. To summarize, the fast-and-slow car
<N\ the coefficient((hy) changes essentially, leading to dynamics is a two-stage process where the velocity differ-
qualitatively different car dynamics. For example, within the ence between the cars is eliminated first. Later on, the head-

regime. Only for small headways,~1 (dense jamjsor for
large headway$,, exceedingD substantially(free flow) «
approaches unity.

4. Different types of the car dynamics

parabolic approximation for the cost function way is optimized. While this is being done, the resulting
velocity difference is not essential and the driver can govern
- 1dYq(h) ., AD?hy the car motion without the necessity of responding fast.
7 4h - A (h\2,+D2)2' (3.29 Other important characteristics, separating dense traffic
-V

and quasifree flow, can be derived as follows. The solution of
the eigenvalue equatid.8) depends actually on two values
¢ and (), sinceA=1 for the cost functiona{2.8). The pa-

2 2 rameterp<<o<<1 by virtue of the adopted assumpti(312).
—3\/5(719’"6‘") - 3\30 M The maximum ofQ) attained athy=D//3 is much larger
thano? as it results from expressidB.26). However, as the
headway distance increases the valugh,) decreases as
h, > [see expressiofi3.25] whereas¢— . So there is a
valueh, of the headway distance at which both these terms
contribute to the eigenvalues to the same extent. Totind
considerh>D where Q(hy)<1 and ¢~o, thereby, (.
=1 and

attaining the maximum

maxT 2D -2 D (326

atho=D/\/3. For7~1 s, 9,100 km/h,D~15 m, and
A~300 m, respectively,Q,,,,~0.5 is obtained. When
Q(hy)>1 the relaxation exhibits damped oscillations
around the stationary poinh(,V). This is due to the eigen-
values {{, ,{_} [see expression(3.1)] having nonzero
imaginary parts. Since fof)(hy)=1 their real and imagi-
nary parts are of the same order, the car motion relaxation is

characterized by one time scale about dimeunits of 7). (= Q(hy) (3.27
This is true also for)(hy)<1 because’,~{_ there, al- 2[o+ o+ Q(hy)]
though the dynamics is a pure fading process now. For still
smaller values of)(hy)~0.6 the ratior =|¢_|/|{, | of these by virtue of formula(3.11). So, h. is specified by
eigenvalues becomes smaller than one-half, which may be 13
defined as the two-scale regime of the dynamics, see Fig. 6. 5 -~

The change between the two-scale and the one-scale re- Qhe)=0"=hc=2 5) D. (3.29

gime corresponds to a value b{~(1-1.5D. Below this
value, the dynamical behavior is one-scale, above it is twoThe valueh, divides the headway distance region into two
scale and will be called “fast-and-slow” in the following.  parts, see Fig. 7. Whem,=h, the velocity of the following
Concerning with the fast-and-slow dynamics the velocitycar is close t09,,, SO this type of car motion will be re-
relaxation and the headway relaxation can be analyzed indferred to as the quasifree flow. In this case the eigenvalue
vidually. According to expression@.17) the initial differ-  equation(3.8) cannot be simplified, so to describe the quasi-
enceh— h,, contributes mainly to the eigenfunction with the free flow the cost functional3.3b only in its full form may
eigenvalue/ _ . Thereby, the velocity difference—V con-  be used. In the opposite casesh., which will be called
tributes mostly to the amplitude, . The amplituden_ also  dense traffic mode, the terrmd is ignorable, reducing the
contains the term of the same magnitude, however, the timeigenvalue equatio(B.8) to
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A—-AP+IQ=0. (3.29  In particular, for the cost functio(2.8) we get
Moreover, in the latter case the description of car dynamics Fo(v|V)= (v—V)? 1 V2 @
can be reduced to the standard form of classical mechanics, o(v]V)= 2 2 | 5
enabling us to analyze the nonlinear stage of the car dynam- mex ma
- Fu(h0|V) Qhy [v*hy  h 4.6
inlNU|V)=——o——| — Tt~ .
IV. NONLINEAR CAR DYNAMICS 405 \ V2 N hy
A. Effective cost functional for dense traffic flow In obtaining formula(4.6) we have taken into account ex-

pression(3.20 relating the velocityV to the headway dis-
tanceh,,, expression(3.25, and omitted some insignificant
terms. The latter term in expressi¢h5) can be also omitted
because it has no effect on the extremal equation.

The most essential feature of the effective cost functional
. » (4.1) is the absence of a time dependent cofactor. This en-
lows from the adopted assumpti¢d.2) and the condition ables us to reformulate the car dynamics in terms of autono-

Q(hy)> o2 for h<h,. S .
In this case, as shown in the Appendix, the cost functiona‘“Ous Hamiltonian equations.

(3.3b can be replaced by the following effective functional
whose integrand does not contain a time dependent factor:

In the dense traffic limih<h,, the variational principle
based on optimizing the cost functiod8l3b) can be simpli-
fied essentially. In the given limit the characteristic time
scales of the car dynamics arand 7/ (hy), with both of
them being small in comparison witY 9 ,,,,. The latter fol-

B. Hamiltonian description of car dynamics
Finding the extremals of functiona.1) can be done as
c{h(t)}:f Fer(h,v,a|V)dt’, (4.1  follows. The phase spadé,v,a} is expanded tgh,h,v,v}
t by adding the relationship between the headway distéince

_ _ . _ and the car velocity as an additional constraint: Minimize
where the integrand, which will be called the Lagrangian of

the car dynamics, is given b o .
Y J Y ffeﬁ(h,v,v)dt 4.7
0
\%
_ rd _(Y
Fer(hv,alV)=F5(h,v,a) = | -h+v [0, Flvn, - subject to the dynamical equation
(4.2 )
h=V—u 4.8

Interestingly,Fe«(h,v,a|V) contains the lead car velociy o ] N
as a parameter and attains its extremal value with respect &d the initial and final conditions
h at the pointh,, corresponding to the optimal driving with B B
the velocityV. The termvd, Flv,,, has been introduced for h(0)=ho. v(0)=vo, (4.9
the sake of convenience only; it does not affect the extremal h()=hy, v(®)=V. (4.10
equation but enables the Lagrangian to attain a minimum
with respect to the car velocity at the stationary point For the sake of simplicity the parametéthas been omitted
(hy,V). in the list of variables ofF.4 and the current time is set to
Both functionals(3.3b and(4.1) possess the same extre- zero. By using a Lagrange multiplier, problét?) is rewrit-
mals to the first order in the small parametgr/Q(hy). In  ten in the standard form; namely, the extremals of
particular, the extremals of function@.1) meet the equation
Feil(h,v,0)+p(h+v—V)]dt 4.1
27_2 d2a d Vv J;) [ ef‘f( v U) p( v )] ( ]7)
1‘}7 F - a(?vf— on| F— Xﬁvﬂv'hvh =0. (4.9
max A1 are sought. They are defined on the extended set of variables

) o {h(t),v(t),p(t)} and subject to condition&.9) and (4.10.
It corresponds directly to the initial full Eq3.16) where the The extremali of functional(4.1) obey the classical
second and third terms in the former parentheses are ignorg« grange equations.

whereas the second term in the latter parentheses is replaced,, constructing the HamiltoniarH(h,v,p,q) that pro-

by its value taken at the stationgry_ point. It is_justified be-guces the same extremal equations the Pontryagin technique
cause these terms are due to variations of the time dependqgtused[%]_ Introducing the new variablg

cofactor.
Keeping in mind its following applications we rewrite La- .
. . &feff(h,v,v)
grangianZF.(h,v,a|V) also in the form = : , (4.12
Jv
T2a2 . . .
Feri(h,v,a|V)=——+ Fo(v) + Fin(h,v|V). (4.4  and solving forv, i.e., findingv=v(h,v,q), the desired
max Hamiltonian is written as
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— N _ In particular, expressiong.17)—(4.19 immediately lead, as
H(h,v,p, Fert(h,v, V). (4.1 k
(N.0.p.Q)=qv = Fer(hov.0) =plv=V). (4.13 it must, to Eq.(4.3).

It can be demonstrated directly that the desired extremals EXPression(4.18 demonstrates that the quasimomentum

meet the standard Hamiltonian system of equations p includes the rate of acceleration variations. In this way
. _ the variablea implicitly enters the Hamiltoniar(h,v,p,q)
h=d,H, v=23d4H, (4.14  specifying a hypersurface in the four-dimensional phase
spacefh,v,a,a}. Even more, by ignoring the dependence of
p=—0dH, q=—23d,H. (415  Fex(h,v,v) on the headway distancé, the velocity

relaxation towards the stationary valMes governed by the
Again, the optimization of functional.7) actually leads equation

to a boundary value problem because the extremal is speci-
fied by both the initial and final conditiong.9) and(4.10. qzavfeﬁ,
The Hamiltonian approachEgs. (4.14 and (4.195] also
shares this property; namely, the initial values of the varidt results from the effective cost function&.1) where the
ablesh and v are given by conditiong4.9), whereas the car velocityv is treated as a primary argument. As will be
initial valuesp, andqq of the quasimomentp andq should  seen below, there is a stage of the car dynamics where this
be chosen such that the system tends to the stationary poiagsumption is justified and the quasimomenfu#0 is con-

(hv,y) a§t—>oo. It is the same situation that we met in ggpyeq. Only the dependence of the Lagrangfag(h,v,v)
dealing with Eq.(3.16. o _ on the headway distande see Eq(4.19, causes variations
However, the Hamiltonian description has a certain adi, the quasimomentunp. Since the velocity control is of
vantage. First, the Hamiltonian itself is conserved, primary importance in the driving strategy, the variapkean
be regarded as a certain measure of the necessity to control
d#(h,v,p,q) -0 (4.16 also the headway distance when eliminating the velocity dif-
dt ' ' ference.

Second, an additional autonomous first integral of the system
(4.14),(4.19, can be found, at least, for a certain stage of the
car dynamics. Fortunately, this is the case for the fast-and- For {2<1 the last term on the right-hand side of expres-
slow car dynamics analyzed below. sion (4.4) is small. Since the headway enters the Hamil-
Note, that this Hamiltonian description of the car motion tonian (4.13 exactly via this term, time variations in the
relaxation towards the stationary state does not contradict tHglasimomenturp are retarded by virtue of the first equation
conservation of phase volume being the general property it line (4.15. The same follows from E¢4.19. The other
Hamiltonian systems. The matter is that the relaxation provariablesh,v,q can vary substantially on scales independent
cess is described by on[yne path |eading to the Stationary of the valueQ)<1. Then, the car dynamics can exhibit mul-

point of the saddle type. Other possible paths are not considiscale relaxation. In particular, Sec. Il B4 demonstrated
ered. this fact; namely, it has been shown that in the given limit the

system dynamics comprises the fast and slow stages. Exactly
Physical meaning of the Hamiltonian variables the time scale of the latter stages depends on the \@lue
. <1. During the former stage the quasimomentprshould
) The t.W.O !Eqs.(4.14) can be_ understooq read!ly. The equa- be practically constant, i.e., it is approximately a first integral
tion for h is justh=V—v, while the equation fog, or, what  of the systen4.14),(4.15. This property, together with the
is the same, expressid#.12) shows that the quasimomen- conservation of Hamiltoniaté.13, allows the integration of

C. Fast-and-slow dynamics

tum q is proportional to the car acceleratiarv: the system of equatiorigd.14) and(4.15). During the follow-
ing slow stage a quasistationary approximation can be used
272 to analyze the system evolution.
q= ﬁ_za' (4.17) The results below are exemplified with the cost function
eff

(2.8). They can be easily generalized to other cost functions.

The physical meaning of the quasimomentpns more 1. Fast stage
complex. To clarify it, rewrite the equation ling.15 in

terms of partial derivatives of the Lagrangidi(h,v.v): guasimomentunp is a constant. During the fast stage mainly
namely, the definitions of the quasimomentontd.12 and the velocity difference —V is eliminated, so Eq4.18 for-

g;isH:intonlanm.l& enables us to represent these equa—ma"y describes the relaxation process of the car velacity

the stationary valué/. Therefore, by virtue of expression
(4.5), the quasimomentum takes zero valugp=0. In this

At the zeroth approximation in the small parametethe

a=dyFer+ P, (418 |imit the Lagrangian componers(h,v|V) as well as the
_ additive constant of the componefg(v|V) can be omitted.
P=InFef - (4.19 So, the Hamiltoniari4.13) becomes
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H(U,a):Ha(a)_HU(U), g  ho o
© o
where < 2 >
> *
© o
. @ ’0
Ha(a)= 52 H,(v)= 92 (4.20 reglon 2
max max © o
.E ..0
and the noncanonical variablés,v,a} are used. S >
Since the HamiltoniarH(v,a) is conserved and the fast Vo Vo
stage describes the velocity relaxatiorMehe car dynamics initial car velocity

obeys the equation FIG. 8. Phase region of the initial values of the headway dis-

_ tance hy and the car velocityv, where the car dynamics is
Ha(8)=H,(v). (4.2 collision-free[based on Eq(4.23].
This immediately gives the relationship between the accel- . .
erationa and theyvgelocitw' P dropping the assumed quadratic dependence of the cost func-
' tion on acceleration. This will be done elsewhere.

1
a=— ;(v -V). (4.22 2. Slow stage

When the system attains a quasiequilibrium with respect

The sign in the latter equation has been chosen so to alloto the car velocity its further evolution is due to the direct
for the system relaxation. dependence of the Hamiltoni&ii(h,v,q,p) on the headway

Equation(4.21) is, in fact, of the general form and the distanceh. It enters the Hamiltonian vi&(h,v|V). As a
linear form of Eq.(4.22 is due to the adopted quadratic result, the velocity difference —V and the acceleratioa
Ansatzof the cost function but not a consequence of linearshould be small. Keeping this in mind, E(.18 can be
ization. Besides, equaliti4.21) can be read as follows. The solved forp. Substitution of the obtained expression into Eq.
comparison of the Hamiltonian partg,(a) andH,(v) with (4.19, and the further linearization with respect to the vari-
the corresponding components of Lagrangidm) demon-  ablev —V and the componeng,, results in
strates that the functiol,(a) actually measures the cost of
the car acceleration and the functiéf),(v) does the same d—aaﬁ]—‘olvzvzah]ﬂm. (4.25
with respect to the car motion relative to the optimal driving
conditions. Thereby, during the fast stage the driver correcttf 7s is the characteristic time scale of the slow stage then
the car dynamics so that the cost of acceleration be equal to
the cost of current motion measured relative to the stationary h—hy, h—hy, . h=hy

e (v=V)~ , a— ,  Qgea~

conditions. Ts 72 73

The headway distandedoes not enter explicitly the gov-
erning equation of the fast stage. However, it varies duringrhese estimates together with E4.25 lead to
the fast stage and finally attains a vahyediffering from the o
initial value hy. In the adopted simple approximation of the (Sl Vi (4.29
cost function, Eq.(4.22 enables us to estimate easily the . ) . o ) )
valueh, ; namely, the direct integration of E@.22 yields In particular, the ratey of time variations in the quasimo-

the relationship mentumq scales asj<Q? for Q—0. Since the Lagrangian
Fet has a minimum ah=h,, the quasimomenturp can be
hy =ho—1(vo—V). (423  estimated as
Applying to formula (4.33 it can be seen that expression P~ 7sdnFim*= QY2(h—hy)

(4.23 holds until the headway distanbebecomes too small _
and it is impossible to ignore the effect of the tefp,(h,v), by virtue of Eq.(4.19. In the limit Q<1 the termg can be
i.e., when ignored in comparison with the quasimomentpnThen, Eq.
(4.18 immediately leads to the relation

h=3/Qhy<h, . (4.24

p= _(gv]:eff! (427)

The car dynamics in the region of small values of the head-
way distance when the probability of collision is high is Which is no more than the standard expression for the mo-
worthy of an individual consideration. Here we only touch mentum of a system described by the Lagrandigg(h,v,0)
on this problem by assuming the collision to happen wherwith v=V—h.
the valueh, given by expressiori4.23 becomes equal to By the same reasons all the terms in HamiltonjarL3
zero. This assumption is justified as a rough approximatiorrontaining the quasimomentugnmay be omitted. Then the
due to estimaté4.24), see Fig. 8. The boundary of the col- substitution of Eq.4.27) into Eq. (4.13 yields the Hamil-
lisionless region can be shifted to the right substantially bytonian of the slow stage
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H(h,v)=H,(v)—Hp(h), (4.28

where
hy (h—hy)?
Hp(h) = Fi(h,V|V) = Fi(hy V|V) = w7 hh
(4.29

In the Lagrangian componetf,(h,v|V) the car velocityv
has been replaced by its stationary valyeand some negli-

PHYSICAL REVIEW E 68, 056109 (2003

V. CONCLUSION AND DISCUSSION

A variational approach to the description of car dynamics
has been developed in case of a car following a lead car
moving at a constant speed. To derive governing equations
for the following car motion the driver preference has been
used to construct a cost functional. Its extremals specify the
optimal paths of the further motion for the following car.
Applying to the general properties of the driver behavior we
analyzed the basic properties of the cost function and pro-
posed a simple parabolidnsatz which, nevertheless,
catches typical features of traffic properties.

gible.terms have been o_mitted. Then the consgrvation of the The concept of a rational driver is formulated. It com-
Hamiltonian7(h,v) during the system dynamics gets the yises the assumptions that the driver follows the optimal

form
H,(v)="Hu(h), (4.30
which leads to the following governing equation:
VO [ny
U—VZE(h—hV) F (43])

paths and corrects the car motion continuously. In this case
the optimal path is a Nash equilibrium of the system, which
is defined as follows. If the driver has chosen an optimal path
at a certain moment of time then no further correction of the
car motion is necessary because it leads to the same result.
As the consequence of the Nash equilibrium the extremals of
the cost functional specify the real dynamics of cars with
rational drivers although originally they determine only the
imaginary paths in the driver’s mind when planning the fur-
ther motion. In this way we obtained several results. The

The conservation law4.30) can be understood in analogy to ontimal velocity approximation has been derived. The weight
that for the fast stage. However, during the slow stage of thepefficient entering a car-following model combining the
car dynamics the car velocity plays the role of the controkqowing-the-leader model and the optimal velocity model
parameter. The driver changes the speed to correct the headss peen found depending on the headway distance. As an
way distance. Again the cost of deviation of the car velocityjmnortant result it has been shown that the car dynamics can
from the stationary value is chosen to be equal to the cost gl categorized under different types according to its proper-
the car motion measured relative to the optimal conditions. jjes. First, we have shown that there can be two types of the

It should be pointed out that the slow stage of the cary relaxation towards the stationary motion, the monoscale
dynam|cs.|s govemed by the conservatlo_n law, expressiogynamics and the fast-and-slow dynamics. Second, we
(4.30, which contains only the headway distarfe@nd the  gjngled out the quasifree motion and the dense traffic mode.
velocityv. At the first approximation, the acceleratianioes The variational technique for the latter mode can be sim-
not enter at all. In this meaning, the slow stage is similar toyjiied essentially; namely, it is possible to reformulate the
other physical systems. However, the stationary point of thest functional so that it does not contain a time dependent
car dynamics is a saddle point rather than a minimum.  cofactor. As a result, the autonomous Hamiltonian descrip-

Up to now, the two different stages of car-following dis- tjon, for the car dynamics has been constructed. For the dense
cussed already in Sec. Ill B 4 have been identified with tWoyaffic mode the fast-and-slow dynamics has been analyzed
different conservation laws. Both of them can be unified intofoy the nonlinear stage. In particular, different conservation
Ju_st another effective conservation law interpolating expresiqws for these stages have been found. A generalized prin-
sions(4.21) and (4.30: ciple of adequate car motion control has been proposed.

We assumed that the lead car moves at a fixed speed. If it
is not the case two different situations should be singled out.
For perfect drivers who can predict rigorously the motion of
Within the same accuracy it is possible to interpolate directlythe car ahead the main results still hold. Otherwise the cost
Eqgs.(4.22 and(4.31), leading to function will depend not only on the current time but also,

what is crucial, on the time when the driver has started to

H,(v)=Ha(@) +Hn(h). (4.32

JQ [ hy| Y2 evaluate the further car dynamics. This disturbs the Nash
a=——|(v—V)— 2—(% (h—hy)|. (4.33  equilibrium and the car correction should be carried out con-
T T tinuously. Briefly this problem was studied in RE33] but it

) ) ) _actually requires a more detailed investigation.
Besides, the proposed interpretations of the conservation

laws (4.21) and (4.30 enable us to formulate a generalized
principle of adequate control. It declares that the effective
cost of correcting the car motion via changing the car accel- Real drivers have certain limitations. They are not capable
eration(fast staggor the car velocityslow stageis equal to  of finding the optimal path precisely and they cannot correct
the cost of the current state of car motion measured withhe car motion continuously. So, the concept of rational-
respect to the optimal driving conditions. driver behavior is just the first approximation of the real

Beyond the rationality
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situation and deviations from this perfect behavior should bénformation of how to govern the car motion. In this case it is

analyzed consistently. A first step towards this problem camatural to assume that he will not do anything with respect to

be found in Ref.[45]. Here we justify some assumptions the car driving and, so, will fix the car motion at the current

adopted there and substantiated them in a different way. state, including the current acceleratianThereby the in-
Let us again concern the driver evaluation of the car moequality

tion quality. For a given path of the car’s further motion

{h(t,t)} the cost functiona(3.3b is written as LAb= L (5.5

PR 2a? u \2 u? determines the region in the phase spibev,a} inside
Lib}= ‘ dte 92 1= Im + 92 bl which the driver cannot control the car motion. In evaluating
max max such a driver behavior with expressi@?2) we can formally
5.1 geat 4, u, anda as constants independent of one another. So
Expression(5.1) can be represented also in the form settingé=h—h,, u=v, anda=a and taking into account
the relation betweeh, andV we get from condition5.5
% 0> (u—V)? the approximate boundary of this region in the following
ﬁ{f)}zf dte” (VWD) —— 4 —— form:
t ﬁmax ﬁmax
2 2 Q(hv) hV
N \2 : 1 |, 22V (h—hy)+ Lo, Pa’+ (v =V)* = (=P = . (5.6
19max hV( hv+ ) ﬂmax T

(5.2 we recall that the parametgy, entering Eq(3.23 coincides
with \/Q/(27). So we reproduced here the expression for the
rational driving boundary as has been introduced in paper
[45] by a different line of reasonings.

where §(t,t) describes the deviation of the given path from
the stationary car motion trajectory,

h(t,t)=hy+ d(t,t).
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A
EOZV

Vv
—-1

ﬁmax

I 16 | 52

= + :
h"hv n2 h(hy+o) APPENDIX: LAGRANGIAN REPRESENTATION
OF THE COST FUNCTIONAL

integrated various fragments of E.1) by parts, assuming  The problem of finding the extremals of the functional
I<h<<\, and dropped terms such H$ wherever possible.

When the driver plans her further motion the current val- %
ues of the headwaly and the velocity are regarded as the L{h(t)}zf dtw(t)F(h,v,a) (A1)
initial conditions. So, when choosing the optimal path she 0
can minimize only the first ternf {h} of expression5.2). i o _ _
This optimization is implemented through the adequate condefined on a set of path(t)}|— is considered. Here, first,
trol over the car acceleratiom so, exactly the acceleration the integrand#(h,v,a) is a given function of the headway
plays the role of the control parameter available for thedistanceh, the current velocity =V —dh/dt, and the accel-
driver actions. erationa= —d?h/dt2. Second, the weight factar(t)>0 is
A real driver can 0n|y approximate|y evaluate the qua“tya function of timet confined within some time interval
of motion. Let us describe the threshold in the driver percep{0.7v), i.e.,w(0)~1, w(t)<1 for t>r,, andw(t)—0 suf-

tion of the motion quality by ficiently fast ast—o. So,w(0)=1 can be adopted without
loss of generality. Third, the trial patfib(t)} meet the initial
A, conditions
Lin=y €c (5.4)
h(0)=ho, v(0)=vo, (A2)

where €. is a small constante.<1, because definitely a
driver can recognize the difference between the state of staynd do not diverge as time goes on, i.e., there is a nui@ber
ing and free motion on an empty road. so that
When the controllable par£{h} of the cost motion is
much smaller than threshol&.4) the driver actually has no [h(t)|<C. (A3)
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The properties of the functional extremals have been studsecond term in expressidA5) plays a substantial role only
ied already. Keeping in mind the results in Sec. lll, a specialvhen the pathh(t) tends to the stationary point. Here the
case is analyzed in the following. Lét4} be the character- symbol = means that functionalA5) possesses the same
istic time scale of the velocity relaxation to the stationarycollection of the extremals as the initial functiodalh(t)}
valueV. In particular, the values dfry4} are estimated by the within the adopted accuracy and the time dependent factor
eigenvalues of the corresponding extremal equation lineaw(t) has been approximated by
ized near the stationary point. The cage< ry is considered
here to show how functiondA1) can be rewritten to elimi-
nate the time dependent facto(t). In this way the problem
of finding the extremals gets the classical form met in theo-
retical mechanics. Formula(A6) can be regarded actually as the definition of

The stationary pointh,,V,a=0} is determined by the the time scaler,:=[ —dw(0)/dt]~*. Taking into account the
properties of both the functiofi(h,v,a) and the factow(t)  relation v — V)= —dh/dt and integrating the second term in

[see expressiofB3.19]. As a result, at the stationary point expressior(A5) by parts yields
[see again expressidB.19]

t
w(t)~1— - (A6)

1 L{h(t)}zf dt[AJ—'(h,v,a)—Mavf(hV,V,O)].
daF =0, f?hfst“T—- (A4) 0 Ty

! (A7)
The derivative 9, F¢ does not contain factors similar to
T4/ 7y. S0O,w(t) cannot be omitted directly. As a first step
the function F(h,v,a) is replaced by the difference
AF(h,v,a):=F(h,v,a)— F(hy,V,0). This does not affect - h
the extremals. The differendeF(h,v,a) as a function of is L{h(t)}= f dt{ Fh,v,a)— —ad,F(hy ,V,O)] . (A8)
practically confined within a time interval (Dy) whose up- 0 ™v
per boundaryl 4= max 7y} and, so,;T4< 7y . Therefore, at the
next step expressioffl) is rewritten as

Omitting the constant components of the integrand which
does not affect the extremals the required result follows:

Minimization of functional(A8) gives the desired extremals
and integral(A8) does not contain a time dependent factor.

% t The function
L{h(t)}= fo dt[A]-‘(h,v,a)— T—V(v—V)av]-'(hV,V,O) ,

h
(A5) Fei(h,v,a|V)=F(h,v,a)— T—avf(hv V,00 (A9)
\%

which is justified to the first order in the small parameter
maxX 74}/ 7, by virtue of expression6A4) and the fact that the can be regarded as a Lagrangian of the car dynamics.
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