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Rational-driver approximation in car-following theory
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The problem of a car following a lead car driven with constant velocity is considered. To derive the
governing equations for the following car dynamics a cost functional is constructed. This functional ranks the
outcomes of different driving strategies, which applies to fairly general properties of the driver behavior.
Assuming rational-driver behavior, the existence of the Nash equilibrium is proved. Rational driving is defined
by supposing that a driver corrects continuously the car motion to follow the optimal path minimizing the cost
functional. The corresponding car-following dynamics is described quite generally by a boundary value prob-
lem based on the obtained extremal equations. Linearization of these equations around the stationary state
results in a generalization of the widely used optimal velocity model. Under certain conditions~the ‘‘dense
traffic’’ limit ! the rational car dynamics comprises two stages, fast and slow. During the fast stage a driver
eliminates the velocity difference between the cars, the subsequent slow stage optimizes the headway. In the
dense traffic limit an effective Hamiltonian description is constructed. This allows a more detailed nonlinear
analysis. Finally, the differences between rational and bounded rational driver behavior are discussed. The
latter, in particular, justifies some basic assumptions used recently by the authors to construct a car-following
model lying beyond the frameworks of rationality.
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I. CAR-FOLLOWING THEORIES AND BASIC
PROPERTIES OF DRIVER BEHAVIOR

Recently, the theoretical and empirical foundations of
physics of traffic flow~for a review, see Refs.@1,2#! have
come into the focus of the physical community. The moti
of individual cars has many peculiarities, since it is co
trolled by motivated driver behavior, together with som
physical boundaries. Nevertheless, on macroscopic scale
vehicle ensembles display phenomena such as phase fo
tion and phase transitions widely met in physical syste
~see, e.g., Refs.@1–3#!. So, the cooperative behavior of ca
treated as active particles seems to be of a more gen
nature than the mechanical laws and constructing a con
tent theory of traffic flow ‘‘from scratch’’ is up to now a
challenging problem.

To describe individual car dynamics a great variety
microscopic models have been proposed. These models
fer in the details of the interaction between cars and the t
update rule, ranging from differential equations to cellu
automata@1,2#. There has been a big deal of work on t
macroscopic behavior emerging from the microscopic
namics when exploring the behavior of systems of intera
ing cars. However, there is still a lot of controversy in bo
the macroscopic behavior when compared to reality@4#, and
in the microscopic foundations of the individual car dyna
ics itself @5#.

One currently adopted approach to specify the mic
scopic governing equations of the individual car motion
the so-called social force model. More details can be fou
in Refs.@6–8#; here only the basic ideas are touched on.
each momentt of time, a drivera changes the speedva of
her car depending on the road conditions and the arra
ment of the neighboring cars:
1063-651X/2003/68~5!/056109~15!/$20.00 68 0561
e

-

the
a-

s

ral
is-

f
if-
e
r

-
t-

-

-

d
t

e-

dva

dt
5ga~va!1 (

a8Þa

gaa8~xa ,vauxa8 ,va8!. ~1.1!

The termga(va) describes the motion of cara on the empty
road, whereas the termgaa8(xa ,vauxa8 ,va8) allows for the
interaction of cara with car a8 (a8Þa). The interaction is
due to the necessity for drivera to keep a certain safe head
way distance between the cars. All the models mentio
above use variousAnsätze for the last term.

The most interesting special case, which covers the
jority of all traffic flow situations, is that of single-lane traf
fic. Here, all cars can be ordered according to their posit
on the road in the car motion directionxa,xa11, herea
51, . . . ,N. Most models take into account solely neare
neighboring carsa and a11, i.e., gaa8Þ0 for a85a11
and, may be,a85a21 only. However, more complicate
models exist that can be described as models with antic
tion @9–13# or the so-called intelligent driver model@14,15#.

The earliest ‘‘follow-the-leader’’ models@16,17# relate the
accelerationaa of car a to the velocity difference (va
2va11) only, i.e.,

dva

dt
52

1

tv
~va2va11!, ~1.2!

wheretv is the characteristic time scale of the velocity r
laxation. In subsequent generalizations of this modeltv be-
came a function of the car motion state, in particular, of
current velocityva and the headwayha5xa112xa2, ~for
a review, see Refs.@5,18#!. Here,, is the car length. In Refs
@19,20# another approach called the optimal velocity mod
is proposed, which describes the individual car motion b
©2003 The American Physical Society09-1
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dva

dt
52

1

tv
@va2qopt~ha!#, ~1.3!

whereqopt(h) is the steady-state velocity~the optimal veloc-
ity! chosen by drivers as function of the headwayh between
the cars. It should be noted that this approach is relate
much earlier safety distance models@21–23#.

Concerning the fundamentals of approximations such
aa5a(va ,va11 ,xa ,xa11), it is noted that there are actuall
two stimuli affecting the driver behavior. One of them is t
necessity to move at the mean speed of traffic flow, in
given case at the speedva11 of cara11. So, first, drivera
should control the velocity difference (va2va11). The other
is the necessity to maintain a safe headway distancehopt(va)
depending on the current velocityva . The following-the-
leader models mainly take into account the former stimu
The optimal velocity model, conversely, allows for the lat
stimulus only. More sophisticated approximations, e.g., R
@14,15,24–28# to name but a few, allow for both stimul
Note also a simpleAnsatzcalled the combined model in Re
@29# which is also related to the intelligent driver mod
@14,15#:

dva

dt
52

~12k!

tv
@va2va11#2

k

tv
@va2qopt~ha!#.

~1.4a!

This equation takes into account both stimuli via a pheno
enological coefficient 0,k,1. This is also the case for th
Helly model @24# which can be written as~cf. Ref. @5#!

dva

dt
52

1

tv
@va2va11#1

1

tvLH
@~xa112xa!2hopt~va!#,

~1.4b!

whereLH is a certain spatial scale andhopt(v) is the optimal
headway distance chosen by drivers when moving at sp
v. Reference@24# used a linearAnsatzfor hopt(v). Later
@26#, this model was generalized to allow for the depende
of the kinetic coefficients on the motion state.

However, the question whether a collection of variab
such as$va ,va11 ,xa ,xa11% specifies the accelerationaa
completely is not trivial. Drivers are characterized by t
motivated behavior rather than physical regularities. For
ample, memory effects may be essential and can destroy
direct relationshipaa5a(va ,va11 ,xa ,xa11). Up to now,
memory effects in car-following modeling have been trea
only in a simplified version. This has been done by relat
the current accelerationaa(t) to the velocitiesva(t2ta),
va11(t2ta) and the headway distanceha(t2ta) taken at a
previous moment (t2ta) of time ~for a review of such an
approach concerning with the following-the-leader mode
see Refs.@5,18#, regarding the optimal velocity model se
Refs.@30–32#!. Hereta is the formal delay time in the drive
response which is treated as a constant. Such an appr
however, is rather formal, because, first, it is not clear w
the memory effects relate only two moments of time inste
of a certain interval as a whole. Second, a simple physiolo
cal delay in the driver response as well as the mental dr
05610
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estimation of the surrounding situation should contribute
the value ofta . If the latter contribution is essential th
delay timeta is to depend substantially on the state of c
motion. Moreover, from our point of view the memory e
fects stem from the fact that the description of individual c
motion is a boundary value problem rather than an ini
value problem. Indeed, at the current moment of time
headway distance and the car velocity are quantities gi
for the driver beforehand. Correcting the car motion s
should choose such a driving strategy that in a certain t
interval the car velocity and headway distance attain th
optimal stationary values, at least, approximately.

These memory effects are the topic of this paper. We p
pose that drivers plan their behavior for a certain time
advance@33# instead of simply reacting to the surroundin
situation. Similar ideas related to the optimum design o
distance controlling driver assistance system are discusse
Ref. @34#. Mathematically, the driver’s planning of the fur
ther motion is just to find extremals of a certain priori
functional that ranks outcomes of different driving strategi

The derivation of microscopic governing equations f
systems with motivated behavior based on a certain ‘‘optim
self-organization’’ principle has been discussed recen
@2,35–39#. The assumption adopted in these works is t
individuals try to minimize the interaction strength o
equivalently, to optimize their own success and to minim
the efforts required for this. The approach discussed h
applies to the concepts of mathematical economics, nam
to the notion of preferences and utility~see, e.g., Ref.@40#!.
In Ref. @33# a specific form of the priority functional ha
been proposed. From that, a certainAnsatzsuch as the com-
bined model~1.4a! or the Helly model~1.4b! could bede-
rived. Nevertheless, the question how to find the prior
functional ‘‘from scratch’’ remains open.

In the present paper the priority functional is construc
by applying to general properties of the driver behavior fo
simplified situation. A car following~no overtaking allowed!
a lead car which is driven with constant speedV is consid-
ered. The task is to derive governing equations for the
lowing car motion specified by the time dependence of
velocity v(t) and the headway distanceh(t).

II. THE COST FUNCTION OF DRIVING

A. General properties of driver preference

Assuming a driver to be able of comparing any two sta
$h1 ,v1%, $h2 ,v2%, the phase plane$h.0,v.0% can be or-
dered by a preference relationd. Therefore, the existence o
a cost functionF(h,v) may be assumed such that

$h1 ,v1%d$h2 ,v2%⇔F~h1 ,v1!>F~h2 ,v2!. ~2.1!

Typically, 2F(h,v) is called the utility function and~for it!
the relationd matches the inequality<. Here, the use of
condition ~2.1! is preferred, because then the cost functi
F(h,v) is similar to the free energy of physical systems, w
the minima as the stationary states.

Obviously, the cost functionF(h,v) cannot be specified
completely because a composite functionC@F(h,v)# also
9-2
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RATIONAL-DRIVER APPROXIMATION IN CAR-FOLLOWING . . . PHYSICAL REVIEW E68, 056109 ~2003!
meets condition~2.1! for any increasing functionC@•#.
Therefore, at the current stage of the theory development
approximation or Ansatz adopted for the cost function
F(h,v) has no meaning.

Applying to a simple speculation@41# it can be shown tha
if a path goes through a certain small neighborhood of
point $h,v% one or many times then only the cumulative tim
intervaldt during which the system was located in the giv
neighborhood contributes to the cost functional. The co
sponding weight coefficientF(h,v) obviously plays the role
of a certain cost function for the given traffic state. So,
resulting cost functional for the whole path is

L$h~ t !,v~ t !%5E
origin

destination

F„h~ t !,v~ t !…dt. ~2.2!

If the driver has incomplete information about the traf
flow pattern ahead she plans the further motion only wit
some limits, spatial and temporal ones. This can be ta
into account by introducing a certain cofactor in front of t
function F(h,v) which depends on spatial coordinates
time.

The cost functionF(h,v) entering the cost functiona
~2.2! is already determined within a constant multiplier and
certain additive term not affecting driver’s preference@41#.
This feature enables us to seek for a reasonableAnsatzfor
the given cost function.

B. Characteristic features of the car motion cost

In the following, the priority function of the car motion
state with respect to the velocityv and the reciprocal value
r51/h of the headway distance will be characterized. N
that the valuer is not the real car density on a highway. Th
present analysis ignores the car length, so we have prefe
to use the valuer defined as above. The most preferab
state is the motion on an empty road (r50) at maximum
speedqmax. This maximum speed is determined by extern
factors. So, at$r50,v5qmax% the cost functionF(r,v)
ªF(h,v)uh51/r has its global minimum:

F~0,qmax!50, ~2.3!

set equal to zero keeping in mind the aforesaid about
freedom in specifying the cost function. Since there is
other minimum for the motion on an empty road,

F~0,0!51, ~2.4!

can be fixed.
Because of the car construction a driver can visually c

trol the headway distance within some valuel;1 –2 m.
When the headway distanceh attains such values a driver ha
to stop her car because of possible collision even at s
ciently slow velocities. So,l coincides with the characteristi
headway distance in dense jams where the car density at
the possible maximum. In the following, all headway d
tances are related to the scalel and the dimensionless var
abler l is used.
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When not moving at all (v50) and the density of cars
surrounding the given car does not come close to the li
values, i.e.,r l !1, it does not matter how many cars a
located in the vicinity. So the assumption that atv50 and
for h@ l the cost function is independent ofr can be used:

F~r,0!51 for r l !1. ~2.5!

In all other cases,F(r,v) depends on certain combination
of r and v rather than onr individually, at least whenr l
!1.

Considering the behavior ofF(r,v) for a fixed speedv it
can be stated that driving with small values ofh ~large values
of r) requires a lot of effort. Thus,F(r,v) increases withr.
The opposite case of small values ofr ~large values ofh)
deserves special attention. Without the possibility of overt
ing no especially attractive headway distance can be mar
Therefore, we assume that the cost functionF(r,v) pos-
sesses the only one minimum attained at the boundary p
r50 provided the velocityv is fixed.

Keeping in mind the aforesaid it is reasonable to write

F~r,v !5F~0,v !1 f S v
qmax

D ~r l !m ~2.6!

for r l !1. Here the exponentm is a constant and the func
tion f (z)→0 as z→0. Since the cost function attains it
minimum at the boundary point we may setm51. More-
over, the latter term on the right-hand side of express
~2.6! can be interpreted as a certain ‘‘interaction’’ potent
between the following and lead cars which is long-dista
one for m51. A detailed analysis of effects caused by t
value of the exponentm requires an individual study. Her
the valuem51 is actually chosen as just a simple reasona
assumption. Since the effect of the surrounding cars is
pressed for small values of the car velocityv the function
f (z) is also to attain its minimum atz50. Therefore,f (z)
5z2 as z!1 should hold. In other words, inside a certa
neighborhood of the origin$r50,v50% the expansion

F~r,v !5F~0,v !1
v2

qmax
2

r l ~2.7!

can be adopted.
Taking into account these speculations about the beha

of the cost functionF(r,v) caused by variations of both it
arguments, the following simpleAnsatzwill be used subse-
quently:

F~r,v !5S 12
v

qmax
D 2

1
v2

qmax
2

r l . ~2.8!

Figure 1 displays this function. It has only one global min
mum atr50 andv5qmax. For a fixed velocityv it attains
a local minimum at the boundaryr50. Ansatz~2.8! gener-
alizes the adopted assumptions about the cost function.
former term takes into account relations~2.3! and ~2.4!, the
latter one is based on approximation~2.7!. Of course, the
9-3
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LUBASHEVSKY, WAGNER, AND MAHNKE PHYSICAL REVIEW E 68, 056109 ~2003!
parabolicAnsatz~2.8! is approximate only in the limitr l
!1. Since this is the main region of interest, this does
constrain its usefulness.

To deal with the car dynamics we should construct
cost functionalL$h(t)% for the car motion paths$h(t)%
treated now as continuous functions of timet. We note that
the time dependence of headway distanceh(t) gives us the
complete information about the car dynamics due to the
lationshipdh/dt5V2v. Leaping ahead, we say that facin
this problem it is necessary to introduce additional notio
First, we should expand the phase space in describing th
motion state because transient processes are now the su
of consideration. Second, drivers plan their behavior fo
certain time in advance instead of simply reacting to
surrounding situation. So we should specify the region ins
which a driver can monitor the traffic flow evolution an
thus, plan driving her car. A priority functional similar to Eq
~2.2! must span the time interval corresponding to this
gion. Beyond it the contribution of the path fragments
evaluating the car motion quality at the given moment
time has to be fairly minor.

III. RATIONAL DYNAMICS OF CAR MOTION

A. Cost functional and the extremal equation

Dealing with transient processes in the car motion
should consider once more the collection of phase varia
characterizing the cost of car motion at the current mom
of time. Keeping in mind conventional driver experience,
will expand the current state of car motion given by headw
h and velocityv with the car accelerationa. This is essential
because a driver cannot change the position and velocit
her car immediately; they vary continuously in time and co
tain no sharp jumps. Conversely, a driver controls the ac
eration directly governing the car motion. Besides, she
change the acceleration practically without delay becaus
the present analysis it is quite reasonable to ignore t
scales related to physiological properties of the driver or
the mechanical properties of the car. So, the cost func
F d(h,v,a) for the motion state$h,v,a% can be written:

F d~h,v,a!5F~h,v !1
t2a2

qmax
2

, ~3.1!

FIG. 1. Characteristic form of the cost function, Eq.~2.8!.
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where the time scalet*1 s characterizes the acceleratio
capability of the car. In writing this expression we have a
sumed that driving without acceleration is preferable. Th
the cost functionFd(h,v,a) had been expanded into a Taylo
series with respect toa, keeping the leading term only. Ac
cording to the result to be obtained the time scalet entering
expression~3.1! and the one used in Eq.~1.4a! are practically
the same. It should be noted that confining ourselves to
pansion~3.1! with respect toa the difference between acce
eration and deceleration processes has been lost. In re
they are different. Ignoring this difference leads to mod
where cars can crash. It is possible to take into account
effect using the approach under development, which, h
ever, is worthy of individual investigation and will be don
somewhere else.

For a real driver, various thresholds in the driver recog
tion of hazards and obstacles exist@42#. One of them is the
distancel at which a driver can recognize the behavior
other objects. This distance is usually related to the thresh
of the visual angleuc subtended, for example, by vehicle
ahead~Fig. 2!. The value ofuc can be estimated asuc
;15–30 min of arc@43#. The critical angleuc , the charac-
teristic height% of cars, and the corresponding mean d
tancel are related by

uc;
%

l
.

This allows for the estimation of the recognition distance
l;200–400 m setting%;2 m anduc;30–15 min of arc.
As previously@33#, we relate the driver anticipation with th
region of sizel in front that is clearly observable and whe
she can recognize the car behavior. A driver plans her mo
based on the information received by monitoring traffic flo
inside the observable region. Under normal conditions t
region should enable her to govern the motion effectively,
example, to decelerate in advance avoiding a possible a
dent. Therefore its sizel has to meet the inequalityl
*qmaxt. Leaping ahead, we introduce the value

s5
qmaxt

l
!1 ~3.2!

treated as a small parameter in the theory to be develope
particular, fort'1 s, qmax'100 km/h, andl'300 m we
haves'0.1.

The sizel of the recognition distance can be estimat
using another argumentation. Iftd;10 s is the typical decel-
eration time from the velocityqmax attained on the given
empty road to zero value then the estimatel;qmaxtd should
hold. Forqmax;100 km/h we have againl'300 m.

FIG. 2. Illustration of the recognition distancel and its relation-
ship with the limit angle of perceptionuc .
9-4
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Now the cost functional of car motion can be written in
integral form as expression~2.2! containing integrand~3.1!.
The car is assumed to be located at pointx along the road
and to move with speedv at the current momentt of time.
The possible paths of further motion$r(t,t),t>t% form the
set S(t,x,v) on which the cost functional is defined. He
and below Gothic letters will be used to label the path va
ables. The function$r(t,t)% allows for a derivation of all the
dynamical variables, the headway distanceh(t), the car ve-
locity u(t), and the accelerationa(t) of the trial car path. The
cost functional evaluating the quality of the path$r(t,t)% can
be written as

L$r%5E
t

`

expF2
r~t!2x

l GF d~h,u,a!dt, ~3.3a!

or

L$h%5E
t

`

expF2
V

l
~t2t !GF d~h,u,a!dt . ~3.3b!

Forms~3.3a! and ~3.3b! correspond to the driver predictio
with spatial or temporal limitations, respectively. The co
functional of form ~3.3a! was used in Ref.@33#. Subse-
quently, functional~3.3b! is used because its form simplifie
the mathematical manipulations when the velocityV of the
lead car is fixed. In particular, dealing with functional~3.3b!
we can specify directly the set of trial pathsS(t,h,v) using
solely the time dependence of$h(t,t)% of the headway dis-
tance. The path variablesu(t,t), a(t,t) are completely deter
mined by the dependence$h(t,t)%:

u~t,t !5V2
]h~t,t !

]t
, a~t,t !52

]2h~t,t !

]t2
. ~3.4!

Furthermore, the cost functional~3.3b! matches the driver
prediction with temporal limitation, the mechanism whic
also allows for the interpretation of the recognition regi
size in terms ofl;qmaxtd . However, both the cost function
als lead practically to the same results for the analyzed s
ation.

Each one of trial paths originates at timet and starts from
(h,v) on the phase plane determined by the headway
tance and velocity of the car at the current timet. Since we
investigate the car motion inside traffic flow but not pr
cesses of leaving it we assume that time variationsh(t) of
the headway distance are bounded. Therefore the trial p
fulfill

h~t,t !ut5t5h~ t !, u~t,t !ut5t5v~ t ! ~3.5!

and do exhibit bounded variations only as time goes to
finity. In other words, there is a constantC.0 with

uh~t,t !u,C for t.t. ~3.6!

In what follows, the driver behavior will be described b
the extremals of the cost functional~3.3b!. Using the stan-
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dard variational technique and taking into account conditio
~3.5! and ~3.6! the governing equation for these extrema
can be derived:

d2

dt2
]aF d22

V

l

d

dt
]aF d1

V2

l2
]aF d

2
d

dt
]uF d1

V

l
]uF d2]hF d50. ~3.7!

To study the spectral properties of Eq.~3.7! it is linearized
around the stationary solution (hV ,V). Its eigenfunctions can
be found by theAnsatz

hz~t!}expS 2z
t

t D .

The obtained eigenvalue equation is given by

~z1f!2z22L~z1f!z1 1
4 V50, ~3.8!

with the coefficients

f5
V

qmax
s, L5

1

2
qmax

2 ]v
2F.0, ~3.9!

V52t2qmax
2 S ]h

2F2
V

l
]h]vFD ~3.10!

and the derivatives are taken at the stationary point (hV ,V).
The inequality]v

2F.0 is supposed to hold beforehand,
particular, it is the case for the cost function~2.8!. Equation
~3.8! possesses four roots, one pair$z1 ,z2% of them have
positive real parts, the other$z18 ,z28 % have negative ones
Since the eigenfunctions with the eigenvalues$z18 ,z28 % di-
verge ast→` we must omit them by virtue of condition
~3.6!. Roughly speaking, these divergent eigenfunctions
scribe the process of a driver leaving traffic flow, for e
ample, to stop the car. Such processes are not under co
eration. The former pair of eigenvalues are given by

z652
1

2
f1F1

4
f21

1

2
L6

1

2
AL22VG1/2

. ~3.11!

So, in a small neighborhood of the stationary point (hV ,V)
of Eq. ~3.7! any extremalhopt(t,t) can be written as

hopt~t,t !5hV1h1expS 2z1

t2t

t D1h2expS 2z2

t2t

t D ,

~3.12!

whereh1 andh2 are some constants.
Equation~3.7! is of fourth order, so its general solution

specified by four conditions. Solutions that diverge as ti
goes to infinity have to be omitted~they are related to
$z18 ,z28 %). Their divergence is due to the exponential cofa
tor in integral~3.3b! so it is retained beyond a small neigh
borhood of the stationary point (hV ,V). Therefore, only two
conditions are needed to specify the desired solution of
~3.7!. In particular, the initial headway distanceh and the car
9-5
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velocity v determine it completely. The latter statement c
also be proved for the more general form~3.3a! of the cost
functional @33#.

B. Rational-driver behavior and Nash equilibrium

In the preceding section the dynamical cost functio
was stated. At the next step the driver strategy based on
evaluation of the motion quality should be described~Fig. 3!.
Following Ref. @33#, it is supposed that the driver, first, i
planning the further motion chooses the pathhopt(t,t) mini-
mizing the motion cost functional~3.3b!,

driver:� hopt~t,t !⇒ min
h(t,t)PS(t,h,v)

L$h~t,t !%. ~3.13!

To do this the driver ‘‘solves’’ Eq.~3.7! subject to conditions
~3.5! and ~3.6! and, thus, get the optimal path of furth
driving, hopt(t,t). As noted in the preceding section the o
timal path choice is completely determined by the current
velocity v and the headway distanceh. The terminal condi-
tion, i.e., the goal of reaching the steady-state motion
implied. Since the driver controls the car motion throu
choosing the adequate valuea of acceleration she has t
‘‘find’’ the second derivative ofhopt(t,t) with respect to the
former argumentt @see expression~3.4!# and, then, to ‘‘cal-
culate’’ the result at the current time. Therefore,

a~ t !52 lim
t→t10

]2hopt~t,t !

]t2
~3.14!

relates the current car accelerationa to the current headway
distanceh and the car velocityv.

Formula~3.14! describes the driver’s choice at the curre
momentt of time. To convert it into the governing equatio

FIG. 3. Illustration of rational-driver strategy. The left pan
corresponds to the case where the driver’s estimate of the car
tion quality is not perfect. This is described by the cost funct
F(h,u,tut) containing the current timet as its argument. So the
found optimal pathshopt(t,t) depend on the timet when the driver
plans the further motion. The right panel presents the ideal c
where the driver is able to evaluate the motion cost precisely
the corresponding cost functionF(h,u,t) does not contain the time
t. So, the optimal path family degenerates into one curve. It sho
be noted that the latter is correct even if the timet enters the cost
function via variations of the lead car velocity.
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of car motion we adopt the second assumption that the dr
performs this choice continuously:

a5R~h,v,V!. ~3.15!

All the car-following models based on this equation, but w
different particular forms of the cost functionF d(h,u,a),
may be categorized as the rational car dynamics approxi
tion.

Equation~3.15! holds even if the cost functionF(h,u,tut)
depends explicitly on the timet at which the driver plans he
further motion. Then, the driver evaluation of traffic flo
state will change in time. Therefore, the resulting path$h(t)%
of the real car motion envelops the family of the optim
paths $hopt(t,t)% generated at different momentst of time
~Fig. 3, left panel!.

The present paper assumes driving to be perfect. The d
er’s choice is based on the precise knowledge of the c
functionF d(h,v,a,t) depending solely on the current hea
way distanceh, car velocityv, accelerationa, and, may be,
the current timet. It does not depend on the moment of tim
when the driver evaluates the possible paths of her fur
motion. This assumption leads to what is called the Na
equilibrium in game theory@44#. If, at time t0 the driver has
found the optimal pathhopt(t,t0) of the car motion@which
meets Eq.~3.7! and does not contain explicitlyt0], then any
recomputation a certain timet.t0 later gives the same re
sult,hopt(t,t)5hopt(t,t0) for t>t. In other words, if at timet0
the driver has chosen an optimal pathhopt(t,t0) then the fur-
ther motion will be described by it independently of wheth
the driver follows it without correction or optimizes the c
motion continuously~Fig. 3, right panel!.

The Nash equilibrium in the driver strategy enables us
conclude that Eq.~3.7! describes the real car dynamics, n
only the imaginary paths existing in the driver’s mind durin
her planning of the further motion. In particular, it can b
rewritten in a form containing the real accelerationa, veloc-
ity v, and headway distanceh:

S d2a

dt2
22

V

l

da

dt
1

V2

l2
aD 2

qmax
2

2t2 S d

dt
]vF2

V

l
]vF1]hFD50.

~3.16!

In the vicinity of the stationary point (hV ,V) its solution is
actually given byAnsatz~3.12!, which immediately leads us
to the following expressions for the amplitudes:

h15
t~v2V!2z2~h2hV!

z12z2
, ~3.17a!

h25
z1~h2hV!2t~v2V!

z12z2
~3.17b!

and relates the car accelerationa to the car velocityv and the
headway distanceh,

a52
~z11z2!

t F ~v2V!2
z2z1

~z11z2!

~h2hV!

t G .
~3.18!

o-
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d
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These results are analyzed individually.

1. Optimal driving condition

The stationary point (h5hV ,v5V,a50) of Eq. ~3.16!
gives the headwayhV which the driver chooses in order t
follow the lead car at speedV. In particular, the expression

]hF2
v
l

]vF50 ~3.19!

specifies the relationship between the values of the head
h and the car velocityv for the stationary traffic flow imi-
tated by the given car-following problem. Solving Eq.~3.19!
for the car velocityv the optimal velocity approximation is
obtained,v5qopt(h). In particular, for the specific form
~2.8! of the cost functionF(h,v) we immediately get forl
!h!l

qopt~h!5qmax

h2

h21D2
, ~3.20!

where the spatial scaleD is given by expression

D5Al l

2
, l !D!l. ~3.21!

Relation~3.20! or similar sigmoid functions are widely use
in the current literature. In particular, forl 51 m and l
5300 m expression~3.21! gives the estimateD'12 m typi-
cally ascribed to the spatial scaleD.

2. Linear governing equation for the car-following problem

By introducing the time scaletv5t/(z11z2) and the
coefficient

gh5
z2z1

~z11z2!2
, ~3.22!

the car dynamics equation~3.18! can be rewritten as

a52
1

tv
F ~v2V!2gh

~h2hV!

tv
G . ~3.23!

Equation~3.23! plays a significant role in models that d
scribe non-rational-driver behavior@45#, where expression
~3.23! specifies an optimal acceleration that could be cho
by rational drivers and the parametergh was introduced phe
nomenologically. Here,gh can be computed using the co
function ~2.8!. It is plotted as well as the ratiotv /t as a
function of the variableV ~Fig. 4!. This representation is du
to the fact that the coefficientL;1 @for the cost function
~2.8! L.1 for l !h!l], the coefficientf!1 by virtue of
the adopted assumption~3.2!, whereas the coefficientV var-
ies around unity. Below, the latter will be justified and t
dependence of the coefficientV on the car motion state wil
be analyzed. As seen in Fig. 4 the time scalestv and t
practically coincide with each other and the parametergh is a
small value.
05610
ay
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3. Following-the-leader model versus optimal velocity model

As discussed already there are two stimuli for a driver
change the current motion state. One is the velocity diff
encev2V between the leading car and her car. The sec
is the difference between the current speedv and the optimal
speedqopt(h) as function of headway. Models such as E
~1.4! take into account both of them, leaving the determin
tion of the weight coefficients to appropriate empirical
experimental data. The results obtained so far actually al
to predict these coefficients.

This can be demonstrated with the combined mo
~1.4a!. Linearizing Eq. ~1.4a! around the stationary poin
(hV ,V) and comparing the result with Eq.~3.18! we get

k5
z2z1

~z11z2! Ftdqopt

dh Uh5hVG21

. ~3.24!

This expression givesk as function of the car motion state
Figure 5 plots this dependence for the cost function~2.8!. As
seen in Fig. 5 the weight coefficientk is small for all inter-
esting values of the headway distance in the car-follow

FIG. 4. The kinetic coefficientgh and the ratiotv /t vs V. In
drawing these curves, expression~3.11! with L51 andf50 was
used. The solid curve isgh(V), the dashed curve istv /t(V).

FIG. 5. The weight coefficientk of the combined model~1.4a!
vs the stationary headwayhV . For comparison, the dashed curv
shows the optimal velocity, Eq.~3.20!.
9-7
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regime. Only for small headwayshV; l ~dense jams! or for
large headwayshV exceedingD substantially~free flow! k
approaches unity.

4. Different types of the car dynamics

As the headway distancehV varies in the intervall !hV
!l the coefficientV(hV) changes essentially, leading
qualitatively different car dynamics. For example, within t
parabolic approximation for the cost function

V54s
tdqopt~h!

dh U
h5hV

58s2
lD2hV

~hV
21D2!2

, ~3.25!

attaining the maximum

Vmax5
3A3~tqmax!

2

2Dl
5

3A3s2

2

l

D
~3.26!

at hV5D/A3. For t;1 s, qmax;100 km/h,D;15 m, and
l;300 m, respectively,Vmax;0.5 is obtained. When
V(hV).1 the relaxation exhibits damped oscillatio
around the stationary point (hV ,V). This is due to the eigen
values $z1 ,z2% @see expression~3.11!# having nonzero
imaginary parts. Since forV(hV)*1 their real and imagi-
nary parts are of the same order, the car motion relaxatio
characterized by one time scale about one~in units of t).
This is true also forV(hV)&1 becausez1'z2 there, al-
though the dynamics is a pure fading process now. For
smaller values ofV(hV)'0.6 the ratior 5uz2u/uz1u of these
eigenvalues becomes smaller than one-half, which may
defined as the two-scale regime of the dynamics, see Fig

The change between the two-scale and the one-scal
gime corresponds to a value ofhV'(1 –1.5)D. Below this
value, the dynamical behavior is one-scale, above it is t
scale and will be called ‘‘fast-and-slow’’ in the following.

Concerning with the fast-and-slow dynamics the veloc
relaxation and the headway relaxation can be analyzed i
vidually. According to expressions~3.17! the initial differ-
enceh2hV contributes mainly to the eigenfunction with th
eigenvaluez2 . Thereby, the velocity differencev2V con-
tributes mostly to the amplitudeh1 . The amplitudeh2 also
contains the term of the same magnitude, however, the

FIG. 6. The ratio of time scalesr 5uz2u/uz1u of the correspond-
ing eigenfunctions describing the car motion relaxation as a fu
tion of V or the headwayhV whenVc is fixed. Computations in this
figure used cost function~2.8! andf50.
05610
is

ill

be
6.
re-

-

i-

e

scalet/z2 on which the corresponding eigenfunction vari
is much bigger than the time scalet/z1 of the other eigen-
function. So, the velocity relaxation falls on the first eige
function. Thus, the velocity differencev2V disappears prac
tically completely during the timet/z1 , which forms the
‘‘fast’’ stage of the car relaxation. At the next ‘‘slow’’ stag
of durationt/z1 the headway deviation from the equilibrium
value hV disappears. To summarize, the fast-and-slow
dynamics is a two-stage process where the velocity dif
ence between the cars is eliminated first. Later on, the he
way is optimized. While this is being done, the resulti
velocity difference is not essential and the driver can gov
the car motion without the necessity of responding fast.

Other important characteristics, separating dense tra
and quasifree flow, can be derived as follows. The solution
the eigenvalue equation~3.8! depends actually on two value
f andV, sinceL.1 for the cost functional~2.8!. The pa-
rameterf,s!1 by virtue of the adopted assumption~3.2!.
The maximum ofV attained athV5D/A3 is much larger
thans2 as it results from expression~3.26!. However, as the
headway distance increases the valueV(hV) decreases as
hV

23 @see expression~3.25!# whereasf→s. So there is a
valuehc of the headway distance at which both these ter
contribute to the eigenvalues to the same extent. To findhc
consider h@D where V(hV)!1 and f's, thereby, z1

.1 and

z2.
V~hV!

2@s1As21V~hV!#
~3.27!

by virtue of formula~3.11!. So,hc is specified by

V~hc!5s2⇒hc52S l

D D 1/3

D. ~3.28!

The valuehc divides the headway distance region into tw
parts, see Fig. 7. WhenhV*hc the velocity of the following
car is close toqmax, so this type of car motion will be re
ferred to as the quasifree flow. In this case the eigenva
equation~3.8! cannot be simplified, so to describe the qua
free flow the cost functional~3.3b! only in its full form may
be used. In the opposite case,h!hc , which will be called
dense traffic mode, the termf is ignorable, reducing the
eigenvalue equation~3.8! to

c-

FIG. 7. Possible types of the car motion state classified us
different properties of the car dynamics and their mutual arran
ment depending onhV .
9-8
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z42Lz21 1
4 V50. ~3.29!

Moreover, in the latter case the description of car dynam
can be reduced to the standard form of classical mecha
enabling us to analyze the nonlinear stage of the car dyn
ics.

IV. NONLINEAR CAR DYNAMICS

A. Effective cost functional for dense traffic flow

In the dense traffic limith!hc , the variational principle
based on optimizing the cost functional~3.3b! can be simpli-
fied essentially. In the given limit the characteristic tim
scales of the car dynamics aret andt/AV(hV), with both of
them being small in comparison withl/qmax. The latter fol-
lows from the adopted assumption~3.2! and the condition
V(hV)@s2 for h!hc .

In this case, as shown in the Appendix, the cost functio
~3.3b! can be replaced by the following effective function
whose integrand does not contain a time dependent fact

L$h~ t !%5E
t

`

Feff~h,v,auV!dt8, ~4.1!

where the integrand, which will be called the Lagrangian
the car dynamics, is given by

Feff~h,v,auV!5F d~h,v,a!2S V

l
h1v D ]vFuV,hV

.

~4.2!

Interestingly,Feff(h,v,auV) contains the lead car velocityV
as a parameter and attains its extremal value with respe
h at the pointhV corresponding to the optimal driving wit
the velocityV. The termv]vFuV,hV

has been introduced fo
the sake of convenience only; it does not affect the extre
equation but enables the Lagrangian to attain a minim
with respect to the car velocityv at the stationary poin
(hV ,V).

Both functionals~3.3b! and ~4.1! possess the same extr
mals to the first order in the small parameters/AV(hV). In
particular, the extremals of functional~4.1! meet the equation

2t2

qmax
2

d2a

dt2
2

d

dt
]vF2]hS F2

V

l
]vFuV,hV

hD50. ~4.3!

It corresponds directly to the initial full Eq.~3.16! where the
second and third terms in the former parentheses are ign
whereas the second term in the latter parentheses is rep
by its value taken at the stationary point. It is justified b
cause these terms are due to variations of the time depen
cofactor.

Keeping in mind its following applications we rewrite La
grangianFeff(h,v,auV) also in the form

Feff~h,v,auV!5
t2a2

qmax
2

1F0~v !1Fint~h,vuV!. ~4.4!
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In particular, for the cost function~2.8! we get

F0~vuV!5
~v2V!2

qmax
2

1S 12
V2

qmax
2 D , ~4.5!

Fint~h,vuV!5
VhV

2

4qmax
2 t2 S v2

V2

hV

h
1

h

hV
D . ~4.6!

In obtaining formula~4.6! we have taken into account ex
pression~3.20! relating the velocityV to the headway dis-
tancehV , expression~3.25!, and omitted some insignifican
terms. The latter term in expression~4.5! can be also omitted
because it has no effect on the extremal equation.

The most essential feature of the effective cost functio
~4.1! is the absence of a time dependent cofactor. This
ables us to reformulate the car dynamics in terms of auto
mous Hamiltonian equations.

B. Hamiltonian description of car dynamics

Finding the extremals of functional~4.1! can be done as
follows. The phase space$h,v,a% is expanded to$h,ḣ,v,v̇%
by adding the relationship between the headway distanch
and the car velocityv as an additional constraint: Minimize

E
0

`

Feff~h,v,v̇ !dt ~4.7!

subject to the dynamical equation

ḣ5V2v ~4.8!

and the initial and final conditions

h~0!5h0 , v~0!5v0 , ~4.9!

h~`!5hV , v~`!5V. ~4.10!

For the sake of simplicity the parameterV has been omitted
in the list of variables ofFeff and the current time is set t
zero. By using a Lagrange multiplier, problem~4.7! is rewrit-
ten in the standard form; namely, the extremals of

E
0

`

@Feff~h,v,v̇ !1p~ ḣ1v2V!#dt ~4.11!

are sought. They are defined on the extended set of varia
$h(t),v(t),p(t)% and subject to conditions~4.9! and ~4.10!.
The extremals of functional~4.11! obey the classica
Lagrange equations.

In constructing the HamiltonianH(h,v,p,q) that pro-
duces the same extremal equations the Pontryagin techn
is used@46#. Introducing the new variableq,

q5
]Feff~h,v,v̇ !

] v̇
, ~4.12!

and solving for v̇, i.e., finding v̇5 v̇(h,v,q), the desired
Hamiltonian is written as
9-9
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LUBASHEVSKY, WAGNER, AND MAHNKE PHYSICAL REVIEW E 68, 056109 ~2003!
H~h,v,p,q!5qv̇2Feff~h,v,v̇ !2p~v2V!. ~4.13!

It can be demonstrated directly that the desired extrem
meet the standard Hamiltonian system of equations

ḣ5]pH, v̇5]qH, ~4.14!

ṗ52]hH, q̇52]vH. ~4.15!

Again, the optimization of functional~4.7! actually leads
to a boundary value problem because the extremal is sp
fied by both the initial and final conditions~4.9! and ~4.10!.
The Hamiltonian approach@Eqs. ~4.14! and ~4.15!# also
shares this property; namely, the initial values of the va
ablesh and v are given by conditions~4.9!, whereas the
initial valuesp0 andq0 of the quasimomentap andq should
be chosen such that the system tends to the stationary
(hV ,V) as t→`. It is the same situation that we met
dealing with Eq.~3.16!.

However, the Hamiltonian description has a certain
vantage. First, the Hamiltonian itself is conserved,

dH~h,v,p,q!

dt
50. ~4.16!

Second, an additional autonomous first integral of the sys
~4.14!,~4.15!, can be found, at least, for a certain stage of
car dynamics. Fortunately, this is the case for the fast-a
slow car dynamics analyzed below.

Note, that this Hamiltonian description of the car moti
relaxation towards the stationary state does not contradic
conservation of phase volume being the general propert
Hamiltonian systems. The matter is that the relaxation p
cess is described by onlyonepath leading to the stationar
point of the saddle type. Other possible paths are not con
ered.

Physical meaning of the Hamiltonian variables

The two Eqs.~4.14! can be understood readily. The equ
tion for ḣ is just ḣ5V2v, while the equation forq̇, or, what
is the same, expression~4.12! shows that the quasimomen
tum q is proportional to the car accelerationa5 v̇:

q5
2t2

qeff
2

a. ~4.17!

The physical meaning of the quasimomentump is more
complex. To clarify it, rewrite the equation line~4.15! in
terms of partial derivatives of the LagrangianFeff(h,v,v̇);
namely, the definitions of the quasimomentumq ~4.12! and
the Hamiltonian~4.13! enables us to represent these eq
tions as

q̇5]vFeff1p, ~4.18!

ṗ5]hFeff . ~4.19!
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In particular, expressions~4.17!–~4.19! immediately lead, as
it must, to Eq.~4.3!.

Expression~4.18! demonstrates that the quasimomentu
p includes the rateȧ of acceleration variations. In this wa
the variableȧ implicitly enters the HamiltonianH(h,v,p,q)
specifying a hypersurface in the four-dimensional pha
space$h,v,a,ȧ%. Even more, by ignoring the dependence
Feff(h,v,v̇) on the headway distanceh, the velocity
relaxation towards the stationary valueV is governed by the
equation

q̇5]vFeff .

It results from the effective cost functional~4.1! where the
car velocityv is treated as a primary argument. As will b
seen below, there is a stage of the car dynamics where
assumption is justified and the quasimomentump50 is con-
served. Only the dependence of the LagrangianFeff(h,v,v̇)
on the headway distanceh, see Eq.~4.19!, causes variations
in the quasimomentump. Since the velocity control is of
primary importance in the driving strategy, the variablep can
be regarded as a certain measure of the necessity to co
also the headway distance when eliminating the velocity
ference.

C. Fast-and-slow dynamics

For V!1 the last term on the right-hand side of expre
sion ~4.4! is small. Since the headwayh enters the Hamil-
tonian ~4.13! exactly via this term, time variations in th
quasimomentump are retarded by virtue of the first equatio
at line ~4.15!. The same follows from Eq.~4.19!. The other
variablesh,v,q can vary substantially on scales independ
of the valueV!1. Then, the car dynamics can exhibit mu
tiscale relaxation. In particular, Sec. III B 4 demonstrat
this fact; namely, it has been shown that in the given limit t
system dynamics comprises the fast and slow stages. Ex
the time scale of the latter stages depends on the valuV
!1. During the former stage the quasimomentump should
be practically constant, i.e., it is approximately a first integ
of the system~4.14!,~4.15!. This property, together with the
conservation of Hamiltonian~4.13!, allows the integration of
the system of equations~4.14! and~4.15!. During the follow-
ing slow stage a quasistationary approximation can be u
to analyze the system evolution.

The results below are exemplified with the cost functi
~2.8!. They can be easily generalized to other cost functio

1. Fast stage

At the zeroth approximation in the small parameterV the
quasimomentump is a constant. During the fast stage main
the velocity differencev2V is eliminated, so Eq.~4.18! for-
mally describes the relaxation process of the car velocityv to
the stationary valueV. Therefore, by virtue of expressio
~4.5!, the quasimomentump takes zero value,p50. In this
limit the Lagrangian componentFint(h,vuV) as well as the
additive constant of the componentF0(vuV) can be omitted.
So, the Hamiltonian~4.13! becomes
9-10
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H~v,a!5Ha~a!2Hv~v !,

where

Ha~a!5
t2a2

qmax
2

, Hv~v !5
~v2V!2

qmax
2

, ~4.20!

and the noncanonical variables$h,v,a% are used.
Since the HamiltonianH(v,a) is conserved and the fas

stage describes the velocity relaxation toV the car dynamics
obeys the equation

Ha~a!5Hv~v !. ~4.21!

This immediately gives the relationship between the ac
erationa and the velocityv:

a52
1

t
~v2V!. ~4.22!

The sign in the latter equation has been chosen so to a
for the system relaxation.

Equation~4.21! is, in fact, of the general form and th
linear form of Eq. ~4.22! is due to the adopted quadrat
Ansatzof the cost function but not a consequence of line
ization. Besides, equality~4.21! can be read as follows. Th
comparison of the Hamiltonian partsHa(a) andHv(v) with
the corresponding components of Lagrangian~4.4! demon-
strates that the functionHa(a) actually measures the cost o
the car acceleration and the functionHv(v) does the same
with respect to the car motion relative to the optimal drivi
conditions. Thereby, during the fast stage the driver corre
the car dynamics so that the cost of acceleration be equ
the cost of current motion measured relative to the station
conditions.

The headway distanceh does not enter explicitly the gov
erning equation of the fast stage. However, it varies dur
the fast stage and finally attains a valueh* differing from the
initial value h0. In the adopted simple approximation of th
cost function, Eq.~4.22! enables us to estimate easily th
valueh* ; namely, the direct integration of Eq.~4.22! yields
the relationship

h* 5h02t~v02V!. ~4.23!

Applying to formula ~4.33! it can be seen that expressio
~4.23! holds until the headway distanceh becomes too smal
and it is impossible to ignore the effect of the termFint(h,v),
i.e., when

h&A3 VhV!hV . ~4.24!

The car dynamics in the region of small values of the he
way distance when the probability of collision is high
worthy of an individual consideration. Here we only tou
on this problem by assuming the collision to happen wh
the valueh* given by expression~4.23! becomes equal to
zero. This assumption is justified as a rough approxima
due to estimate~4.24!, see Fig. 8. The boundary of the co
lisionless region can be shifted to the right substantially
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dropping the assumed quadratic dependence of the cost f
tion on acceleration. This will be done elsewhere.

2. Slow stage

When the system attains a quasiequilibrium with resp
to the car velocityv its further evolution is due to the direc
dependence of the HamiltonianH(h,v,q,p) on the headway
distanceh. It enters the Hamiltonian viaFint(h,vuV). As a
result, the velocity differencev2V and the accelerationa
should be small. Keeping this in mind, Eq.~4.18! can be
solved forp. Substitution of the obtained expression into E
~4.19!, and the further linearization with respect to the va
ablev2V and the componentFint , results in

q̈2a]v
2F0uv5V5]hFint . ~4.25!

If ts is the characteristic time scale of the slow stage the

~v2V!;
h2hV

ts
, a;

h2hV

ts
2

, q}ȧ;
h2hV

ts
3

.

These estimates together with Eq.~4.25! lead to

ts;V21/2t. ~4.26!

In particular, the rateq̇ of time variations in the quasimo
mentumq scales asq̇}V2 for V→0. Since the Lagrangian
Feff has a minimum ath5hV the quasimomentump can be
estimated as

p;ts]hFint}V1/2~h2hV!

by virtue of Eq.~4.19!. In the limit V!1 the termq̇ can be
ignored in comparison with the quasimomentump. Then, Eq.
~4.18! immediately leads to the relation

p52]vFeff , ~4.27!

which is no more than the standard expression for the m
mentum of a system described by the LagrangianFeff(h,v,0)
with v5V2ḣ.

By the same reasons all the terms in Hamiltonian~4.13!
containing the quasimomentumq may be omitted. Then the
substitution of Eq.~4.27! into Eq. ~4.13! yields the Hamil-
tonian of the slow stage

FIG. 8. Phase region of the initial values of the headway d
tance h0 and the car velocityv0 where the car dynamics is
collision-free@based on Eq.~4.23!#.
9-11
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H~h,v !5Hv~v !2Hh~h!, ~4.28!

where

Hh~h!5Fint~h,VuV!2Fint~hV ,VuV!5
V hV

2

4qmax
2 t2

~h2hV!2

hVh
.

~4.29!

In the Lagrangian componentFint(h,vuV) the car velocityv
has been replaced by its stationary valueV, and some negli-
gible terms have been omitted. Then the conservation of
Hamiltonian H(h,v) during the system dynamics gets th
form

Hv~v !5Hh~h!, ~4.30!

which leads to the following governing equation:

v2V5
AV

2t
~h2hV!AhV

h
. ~4.31!

The conservation law~4.30! can be understood in analogy
that for the fast stage. However, during the slow stage of
car dynamics the car velocity plays the role of the cont
parameter. The driver changes the speed to correct the h
way distance. Again the cost of deviation of the car veloc
from the stationary value is chosen to be equal to the cos
the car motion measured relative to the optimal condition

It should be pointed out that the slow stage of the
dynamics is governed by the conservation law, express
~4.30!, which contains only the headway distanceh and the
velocity v. At the first approximation, the accelerationa does
not enter at all. In this meaning, the slow stage is similar
other physical systems. However, the stationary point of
car dynamics is a saddle point rather than a minimum.

Up to now, the two different stages of car-following di
cussed already in Sec. III B 4 have been identified with t
different conservation laws. Both of them can be unified in
just another effective conservation law interpolating expr
sions~4.21! and ~4.30!:

Hv~v !5Ha~a!1Hh~h!. ~4.32!

Within the same accuracy it is possible to interpolate direc
Eqs.~4.22! and ~4.31!, leading to

a52
1

t F ~v2V!2
AV

2t S hV

h D 1/2

~h2hV!G . ~4.33!

Besides, the proposed interpretations of the conserva
laws ~4.21! and ~4.30! enable us to formulate a generalize
principle of adequate control. It declares that the effect
cost of correcting the car motion via changing the car ac
eration~fast stage! or the car velocity~slow stage! is equal to
the cost of the current state of car motion measured w
respect to the optimal driving conditions.
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V. CONCLUSION AND DISCUSSION

A variational approach to the description of car dynam
has been developed in case of a car following a lead
moving at a constant speed. To derive governing equat
for the following car motion the driver preference has be
used to construct a cost functional. Its extremals specify
optimal paths of the further motion for the following ca
Applying to the general properties of the driver behavior
analyzed the basic properties of the cost function and p
posed a simple parabolicAnsatz, which, nevertheless
catches typical features of traffic properties.

The concept of a rational driver is formulated. It com
prises the assumptions that the driver follows the optim
paths and corrects the car motion continuously. In this c
the optimal path is a Nash equilibrium of the system, wh
is defined as follows. If the driver has chosen an optimal p
at a certain moment of time then no further correction of
car motion is necessary because it leads to the same re
As the consequence of the Nash equilibrium the extremal
the cost functional specify the real dynamics of cars w
rational drivers although originally they determine only t
imaginary paths in the driver’s mind when planning the fu
ther motion. In this way we obtained several results. T
optimal velocity approximation has been derived. The wei
coefficient entering a car-following model combining th
following-the-leader model and the optimal velocity mod
has been found depending on the headway distance. A
important result it has been shown that the car dynamics
be categorized under different types according to its prop
ties. First, we have shown that there can be two types of
car relaxation towards the stationary motion, the monosc
dynamics and the fast-and-slow dynamics. Second,
singled out the quasifree motion and the dense traffic mo

The variational technique for the latter mode can be s
plified essentially; namely, it is possible to reformulate t
cost functional so that it does not contain a time depend
cofactor. As a result, the autonomous Hamiltonian desc
tion for the car dynamics has been constructed. For the de
traffic mode the fast-and-slow dynamics has been analy
for the nonlinear stage. In particular, different conservat
laws for these stages have been found. A generalized p
ciple of adequate car motion control has been proposed.

We assumed that the lead car moves at a fixed speed.
is not the case two different situations should be singled o
For perfect drivers who can predict rigorously the motion
the car ahead the main results still hold. Otherwise the c
function will depend not only on the current time but als
what is crucial, on the time when the driver has started
evaluate the further car dynamics. This disturbs the N
equilibrium and the car correction should be carried out c
tinuously. Briefly this problem was studied in Ref.@33# but it
actually requires a more detailed investigation.

Beyond the rationality

Real drivers have certain limitations. They are not capa
of finding the optimal path precisely and they cannot corr
the car motion continuously. So, the concept of ration
driver behavior is just the first approximation of the re
9-12
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situation and deviations from this perfect behavior should
analyzed consistently. A first step towards this problem
be found in Ref.@45#. Here we justify some assumption
adopted there and substantiated them in a different way.

Let us again concern the driver evaluation of the car m
tion quality. For a given path of the car’s further motio
$h(t,t)% the cost functional~3.3b! is written as

L$h%5E
t

`

dt e2(V/l)(t2t)F t2a2

qmax
2

1S 12
u

qmax
D 2

1
u2

qmax
2

l

hG .

~5.1!

Expression~5.1! can be represented also in the form

L$h%5E
t

`

dt e2(V/l)(t2t)F t2a2

qmax
2

1
~u2V!2

qmax
2

1
V2

qmax
2

ld2

hV
2~hV1d!

G1
2V

qmax
2 ~h2hV!1L0 ,

~5.2!

whered(t,t) describes the deviation of the given path fro
the stationary car motion trajectory,

h~t,t !5hV1d~t,t !.

Here,L0 is the cost of stationary car motion,

L05
l

V S V

qmax
21D 2

. ~5.3!

In addition, when deriving expression~5.1! we have used

l

h
5

l

hV
2

ld

hV
2

1
ld2

hV
2~hV1d!

,

integrated various fragments of Eq.~5.1! by parts, assuming
l !h!l, and dropped terms such asl /h wherever possible.

When the driver plans her further motion the current v
ues of the headwayh and the velocityv are regarded as th
initial conditions. So, when choosing the optimal path s
can minimize only the first termLc$h% of expression~5.2!.
This optimization is implemented through the adequate c
trol over the car accelerationa, so, exactly the acceleratio
plays the role of the control parameter available for
driver actions.

A real driver can only approximately evaluate the qual
of motion. Let us describe the threshold in the driver perc
tion of the motion quality by

Lthr5
l

V
ec

2 , ~5.4!

where ec is a small constant,ec!1, because definitely a
driver can recognize the difference between the state of s
ing and free motion on an empty road.

When the controllable partLc$h% of the cost motion is
much smaller than threshold~5.4! the driver actually has no
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information of how to govern the car motion. In this case it
natural to assume that he will not do anything with respec
the car driving and, so, will fix the car motion at the curre
state, including the current accelerationa. Thereby the in-
equality

Lc$h%&Lthr ~5.5!

determines the region in the phase space$h,v,a% inside
which the driver cannot control the car motion. In evaluati
such a driver behavior with expression~5.2! we can formally
treatd, u, anda as constants independent of one another.
settingd5h2hv , u5v, anda5a and taking into accoun
the relation betweenhV and V we get from condition~5.5!
the approximate boundary of this region in the followin
form:

t2a21~v2V!21
V~hV!

4t2

hV

h
~h2hV!2&ec

2qmax
2 . ~5.6!

We recall that the parametergh entering Eq.~3.23! coincides
with AV/(2t). So we reproduced here the expression for
rational driving boundary as has been introduced in pa
@45# by a different line of reasonings.
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APPENDIX: LAGRANGIAN REPRESENTATION
OF THE COST FUNCTIONAL

The problem of finding the extremals of the functional

L$h~ t !%5E
0

`

dt w~ t !F~h,v,a! ~A1!

defined on a set of paths$h(t)%u t50
` is considered. Here, first

the integrandF(h,v,a) is a given function of the headwa
distanceh, the current velocityv5V2dh/dt, and the accel-
erationa52d2h/dt2. Second, the weight factorw(t).0 is
a function of time t confined within some time interva
(0,tV), i.e.,w(0);1, w(t)!1 for t@tV , andw(t)→0 suf-
ficiently fast ast→`. So,w(0)51 can be adopted withou
loss of generality. Third, the trial paths$h(t)% meet the initial
conditions

h~0!5h0 , v~0!5v0 , ~A2!

and do not diverge as time goes on, i.e., there is a numbC
so that

uh~ t !u,C. ~A3!
9-13
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The properties of the functional extremals have been s
ied already. Keeping in mind the results in Sec. III, a spec
case is analyzed in the following. Let$td% be the character
istic time scale of the velocity relaxation to the stationa
valueV. In particular, the values of$td% are estimated by the
eigenvalues of the corresponding extremal equation lin
ized near the stationary point. The casetd!tV is considered
here to show how functional~A1! can be rewritten to elimi-
nate the time dependent factorw(t). In this way the problem
of finding the extremals gets the classical form met in th
retical mechanics.

The stationary point$hV ,V,a50% is determined by the
properties of both the functionF(h,v,a) and the factorw(t)
@see expression~3.19!#. As a result, at the stationary poin
@see again expression~3.19!#

]aFst50, ]hFst}
1

tV
. ~A4!

The derivative]vFst does not contain factors similar t
td /tV . So, w(t) cannot be omitted directly. As a first ste
the function F(h,v,a) is replaced by the differenc
DF(h,v,a)ªF(h,v,a)2F(hV ,V,0). This does not affec
the extremals. The differenceDF(h,v,a) as a function oft is
practically confined within a time interval (0,Td) whose up-
per boundaryTd*max$td% and, so,Td!tV . Therefore, at the
next step expression~A1! is rewritten as

L$h~ t !%>E
0

`

dtH DF~h,v,a!2
t

tV
~v2V!]vF~hV ,V,0!J ,

~A5!

which is justified to the first order in the small parame
max$td%/tV by virtue of expressions~A4! and the fact that the
e

es

ds

IfV

05610
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second term in expression~A5! plays a substantial role only
when the pathh(t) tends to the stationary point. Here th
symbol > means that functional~A5! possesses the sam
collection of the extremals as the initial functionalL$h(t)%
within the adopted accuracy and the time dependent fa
w(t) has been approximated by

w~ t !'12
t

tV
. ~A6!

Formula ~A6! can be regarded actually as the definition
the time scaletVª@2dw(0)/dt#21. Taking into account the
relation (v2V)52dh/dt and integrating the second term
expression~A5! by parts yields

L$h~ t !%>E
0

`

dtH DF~h,v,a!2
~h2hV!

tV
]vF~hV ,V,0!J .

~A7!

Omitting the constant components of the integrand wh
does not affect the extremals the required result follows:

L$h~ t !%>E
0

`

dtHF~h,v,a!2
h

tV
]vF~hV ,V,0!J . ~A8!

Minimization of functional~A8! gives the desired extremal
and integral~A8! does not contain a time dependent fact
The function

Feff~h,v,auV!ªF~h,v,a!2
h

tV
]vF~hV ,V,0! ~A9!

can be regarded as a Lagrangian of the car dynamics.
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